首页> 外文期刊>ACS applied materials & interfaces >Tuning the Mechanical Properties of Hydrogel Core-Shell Particles by Inwards Interweaving Self-Assembly
【24h】

Tuning the Mechanical Properties of Hydrogel Core-Shell Particles by Inwards Interweaving Self-Assembly

机译:通过向内交织自组装调节水凝胶核-壳颗粒的力学性能

获取原文
获取原文并翻译 | 示例
       

摘要

Mechanical properties of hydrogel particles are of importance for their interactions with cells or tissue, apart from their relevance to other applications. While so far the majority of works aiming at tuning particle mechanics relied on chemical cross-linking, we report a novel approach using inwards interweaving self-assembly of poly(allylamine) (PA) and poly(styrenesulfonic acid) (PSSA) on agarose gel beads. Using this technique, shell thicknesses up to tens of micrometers can be achieved from single-polymer incubations and accurately controlled by varying the polymer concentration or incubation period. We quantified the changes in mechanical properties of hydrogel core-shell particles. The effective elastic modulus of core-shell particles was determined from force spectroscopy measurements using the colloidal probe-AFM (CP-AFM) technique. By varying the shell thickness between 10 and 24 mu m, the elastic modulus of particles can be tuned in the range of 10-190 kPa and further increased by increasing the layer number. Through fluorescence quantitative measurements, the polymeric shell density was found to increase together with shell thickness and layer number, hence establishing a positive correlation between elastic modulus and shell density of core-shell particles. This is a valuable method for constructing multidensity or single-density shells of tunable thickness and is particularly important in mechanobiology as studies have reported enhanced cellular uptake of particles in the low-kilopascal range (<140 kPa). We anticipate that our results will provide the first steps toward the rational design of core-shell particles for the separation of biomolecules or systemic study of stiffness-dependent cellular uptake.
机译:除了与其他应用相关之外,水凝胶颗粒的机械性质对于它们与细胞或组织的相互作用也很重要。到目前为止,大多数旨在调整粒子力学的工作都依赖于化学交联,但我们报告了一种在琼脂糖凝胶上使用聚(烯丙胺)(PA)和聚(苯乙烯磺酸)(PSSA)向内交织自组装的新方法珠子。使用这种技术,可以从单聚合物孵育中获得高达数十微米的壳厚度,并可以通过改变聚合物浓度或孵育时间来精确控制外壳厚度。我们量化了水凝胶核-壳颗粒力学性能的变化。使用胶体探针-AFM(CP-AFM)技术通过力谱测量确定了核-壳颗粒的有效弹性模量。通过在10到24μm之间改变壳厚度,可以将颗粒的弹性模量调整在10-190 kPa的范围内,并通过增加层数进一步提高。通过荧光定量测量,发现聚合物壳密度与壳厚度和层数一起增加,因此在弹性模量和核-壳颗粒的壳密度之间建立正相关。这是构建厚度可调节的多密度或单密度壳的一种有价值的方法,并且在力学生物学中尤其重要,因为研究表明在低千帕斯卡范围(<140 kPa)内颗粒的细胞吸收增强。我们预计我们的结果将为核壳颗粒的合理设计提供第一步,以分离生物分子或系统研究刚度依赖性细胞摄取。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号