首页> 外文期刊>ACS applied materials & interfaces >Porous Fe3O4-NCs-in-Carbon Nanofoils as High-Rate and High-Capacity Anode Materials for Lithium--Ion Batteries from Na-Citrate-Mediated Growth of Super-Thin Fe-Ethylene Glycolate Nanosheets
【24h】

Porous Fe3O4-NCs-in-Carbon Nanofoils as High-Rate and High-Capacity Anode Materials for Lithium--Ion Batteries from Na-Citrate-Mediated Growth of Super-Thin Fe-Ethylene Glycolate Nanosheets

机译:多孔Fe3O4-NCs-in-Carbon纳米箔作为柠檬酸钠介导的超薄乙醇酸乙醇乙酯纳米片生长的锂离子电池的高速率和高容量阳极材料

获取原文
获取原文并翻译 | 示例
       

摘要

Porous Fe3O4/C composite nanofoils, characterized by a thickness of similar to 20 nm and with similar to 8 nm open pores and similar to 5 nm Fe3O4 nanoparticles embedded in the carbon matrix, were prepared for the first time using Na-citrate to mediate the growth of hexagonal Fe-ethylene glycolate nanosheets and, subsequently,annealingthern at 850 degrees C in N-2. It has been found that the Fe-ethylene glycolate nanosheets can be effectively slimmed by increasing the concentration of Na-citrate, and the microstructures of Fe3O4/C nanocomposites may be tailored by the annealing temperature. When tested as the anode materials in LIBs, the Fe3O4/C nanofoils obtained after annealing at 350 degrees C were found to exhibit superior electrochemical performance due to its optimal microstructure, featured by a reversible capacity of 1314.4 mAh g(-1) at 0.4 A g(-1) over 100 cycles, 1034.2 mAh g(-1) at 1 A g(-1), and 686.4 mAh g(-1) at 5 A g(-1) after 500 cycles, whereas the annealing treatments at 450 and 550 degrees C render the Fe3O4/C nanocomposites with the inferior electrochemical performances as a result of shrinking porous microstructures and coarsening of Fe3O4 nanoparticles in the carbon matrix. With a particle-size control model proposed herein, the: cycle discharging behaviors of the Fe3O4/C nanocomposites with different microstructures are well explained from the perspective of the local confinement of Fe3O4 nanoparticles inside the carbon matrix and their evolution in size and composite microstructure during the charge/discharge cycling.
机译:首次使用柠檬酸钠调节碳纳米管中嵌入的Fe3O4 / C复合纳米箔的特征,该纳米箔的特征是厚度约20 nm,开口孔约8 nm,并且嵌入碳基质中的Fe3O4纳米颗粒约5 nm。六方铁乙二醇乙二醇酯纳米片的生长,随后在850摄氏度的N-2中退火。已经发现,通过增加柠檬酸钠的浓度可以有效地使Fe-乙二醇乙二醇纳米片变薄,并且可以通过退火温度调整Fe 3 O 4 / C纳米复合物的微观结构。当在LIB中作为阳极材料进行测试时,发现在350摄氏度退火后获得的Fe3O4 / C纳米箔由于其最佳的微观结构而具有优异的电化学性能,在0.4 A时可逆容量为1314.4 mAh g(-1)。在100个循环中达到g(-1),在500个循环之后在1 A g(-1)时为1034.2 mAh g(-1)和在5 A g(-1)时为686.4 mAh g(-1) 450和550摄氏度使Fe3O4 / C纳米复合材料的电化学性能较差,这是由于碳基体中多孔微结构的收缩和Fe3O4纳米粒子的粗化导致的。利用本文提出的粒度控制模型,从碳基质内部Fe3O4纳米颗粒的局限性及其在尺寸和结构变化过程中的演化,很好地解释了具有不同微观结构的Fe3O4 / C纳米复合材料的循环放电行为。充电/放电循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号