首页> 外文期刊>Contributions to Plasma Physics >Application of high current and current zero simulations of high-voltage circuit breakers
【24h】

Application of high current and current zero simulations of high-voltage circuit breakers

机译:大电流和零电流仿真在高压断路器中的应用

获取原文
获取原文并翻译 | 示例
       

摘要

This paper reports on the use of computational fluid dynamic (CFD) simulations to predict the interruption behaviour of high-voltage circuit breakers (HV-CB) using the self-blast principle. Two different levels of accuracy of the arc model are proven to be sufficiently accurate for simulating the high-current phase and the period around current zero (CZ). For the high-current phase, a simplified equivalent model of the arc is implemented to predict the pressure build-up, and even more important to accurately trace the hot gas from the arcing zone into the exhausts and the heating volume. A detailed analysis of the gas mixing in the heating volume for different arcing times and current amplitudes showed the optimum geometrical design of the heating volume. For the CZ phase, a more detailed arc model is needed including the effects of ohmic heating, radiative energy transfer, and turbulent cooling fully resolved in space and time. The validation with experiments was done and shows good agreement which justifies the use of the implemented model. With it, scaling laws varying only one parameter at a time (pressure and applied current slope) were derived and confirm previously found empirical laws. This is of particular interest, as it is very difficult to derive such scaling laws from experiments where the scatter is always very large and where it is impossible to vary only one parameter at a time. The influence of the most important geometrical parameters of the nozzle on the interruption performance is shown. In addition to previous experimental indications of this, the simulation reveals that turbulent cooling on the arc edge is the main reason for the difference in interruption performance. Moreover, the exact spatio-temporal build-up of arc resistance and with it the detailed understanding of the arc interruption process is possible and shown here for the first time. These simulations enable us to predict HV-CB performance and to minimise the number of development tests and are routinely used in new development projects.
机译:本文报告了使用计算流体力学(CFD)模拟使用自爆原理预测高压断路器(HV-CB)的中断行为的情况。事实证明,电弧模型的两个不同级别的精度对于模拟高电流相位和电流零(CZ)周围的周期足够准确。对于大电流阶段,实施了简化的电弧等效模型来预测压力的累积,而更重要的是要准确地将热气体从电弧区追踪到废气和热量中。对不同起弧时间和电流幅度的加热容积中气体混合的详细分析显示了加热容积的最佳几何设计。对于CZ相,需要更详细的电弧模型,包括在空间和时间上完全解决的欧姆加热,辐射能传递和湍流冷却的影响。实验验证已经完成,并显示出良好的一致性,这证明了所实施模型的合理使用。有了它,一次只能改变一个参数(压力和施加的电流斜率)的比例定律被推导出来,并证实了先前发现的经验定律。这是特别令人感兴趣的,因为很难从这样的实验中得出这样的缩放定律,在这些实验中,散射总是很大,并且不可能一次仅改变一个参数。显示了喷嘴最重要的几何参数对中断性能的影响。除了先前的实验指示,该模拟还表明,电弧边缘的湍流冷却是造成中断性能差异的主要原因。此外,电弧电阻的精确时空累积以及由此产生的对电弧中断过程的详细理解是可能的,并且在此首次显示。这些仿真使我们能够预测HV-CB的性能,并最大程度地减少开发测试的次数,这些仿真通常用于新的开发项目中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号