首页> 外文期刊>Current Biology: CB >Centromere Strength Provides the Cell Biological Basis for Meiotic Drive and Karyotype Evolution in Mice
【24h】

Centromere Strength Provides the Cell Biological Basis for Meiotic Drive and Karyotype Evolution in Mice

机译:着丝粒强度为小鼠减数分裂驱动和核型进化提供了细胞生物学基础。

获取原文
获取原文并翻译 | 示例
           

摘要

Mammalian karyotypes (number and structure of chromosomes) can vary dramatically over short evolutionary time frames [1-3]. There are examples of massive karyotype conversion, from mostly telocentric (centromere terminal) to mostly metacentric (centromere internal), in 102-10 s years [4, 5]. These changes typically reflect rapid fixation of Robertsonian (Rb) fusions, a common chromosomal rearrangement that joins two telocentric chromosomes at their centromeres to create one metacentric [5]. Fixation of Rb fusions can be explained by meiotic drive: biased chromosome segregation during female meiosis in violation of Mendel's first law [3, 6, 7]. However, there is no mechanistic explanation of why fusions would preferentially segregate to the egg in some populations, leading to fixation and karyotype change, while other populations preferentially eliminate the fusions and maintain a telocentric karyotype. Here we show, using both laboratory models and wild mice, that differences in centromere strength predict the direction of drive. Stronger centromeres, manifested by increased kinetochore protein levels and altered interactions with spindle microtubules, are preferentially retained in the egg. We find that fusions preferentially segregate to the polar body in laboratory mouse strains when the fusion centromeres are weaker than those of telocentrics. Conversely, fusion centromeres are stronger relative to telocentrics in natural house mouse populations that have changed karyotype by accumulating metacentric fusions. Our findings suggest that natural variation in centromere strength explains how the direction of drive can switch between populations. They also provide a cell biological basis of centromere drive and karyotype evolution.
机译:哺乳动物的核型(染色体的数目和结构)可以在短的进化时间框架内发生巨大变化[1-3]。有大量的染色体核型转化的例子,在102-10 s年内,从大部分以中心为中心(着丝粒末端)转变为了以偏中为中心(着丝粒内部)[4,5]。这些变化通常反映了罗伯逊(Rb)融合体的快速固定,这是一种常见的染色体重排,在其着丝点处连接两个端粒染色体,从而创建了一个变质心[5]。 Rb融合的固定可通过减数分裂驱动来解释:在雌性减数分裂过程中,染色体的偏向偏向违反了孟德尔的第一定律[3,6,7]。但是,没有机械学解释为什么融合在某些种群中会优先与卵分离,从而导致固定和核型改变,而另一些种群却优先消除融合并保持端粒核型。在这里,我们使用实验室模型和野生小鼠显示,着丝粒强度的差异可预测驱动的方向。通过增加线粒体蛋白水平和改变与纺锤体微管的相互作用表现出较强的着丝粒,优先保留在卵中。我们发现,当融合着丝粒比远心细胞弱时,融合物优先偏向实验室小鼠品系的极体。相反,在通过聚集超中心融合改变了核型的天然家鼠种群中,融合着丝粒相对于端中心而言更强。我们的发现表明,着丝粒强度的自然变化解释了驱动力的方向如何在种群之间切换。它们还提供着丝粒驱动和核型进化的细胞生物学基础。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号