...
首页> 外文期刊>Current Biology: CB >Keratocyte Fragments and Cells Utilize Competing Pathways to Move in Opposite Directions in an Electric Field
【24h】

Keratocyte Fragments and Cells Utilize Competing Pathways to Move in Opposite Directions in an Electric Field

机译:角质形成细胞碎片和细胞利用竞争途径在电场中沿相反方向移动

获取原文
获取原文并翻译 | 示例
           

摘要

Sensing of an electric field (EF) by cells-galvanotaxis-is important in wound healing [1], development [2], cell division, nerve growth, and angiogenesis [3]. Different cell types migrate in opposite directions in EFs [4], and the same cell can switch the directionality depending on conditions [5]. A tug-of-war mechanism between multiple signaling pathways [6] can direct Dictyostelium cells to either cathode or anode. Mechanics of motility is simplest in fish keratocytes, so we turned to keratocytes to investigate their migration in EFs. Keratocytes sense electric fields and migrate to the cathode [7, 8]. Keratocyte fragments [9, 10] are the simplest motile units. Cell fragments from leukocytes are able to respond to chemotactic signals [11], but whether cell fragments are galvanotactic was unknown. We found that keratocyte fragments are the smallest motile electric field-sensing unit: they migrate to the anode, in the opposite direction of whole cells. Myosin II was essential for the direction sensing of fragments but not for parental cells, while PI3 kinase was essential for the direction sensing of whole cells but not for fragments. Thus, two signal transduction pathways, one depending on PI3K, another on myosin, compete to orient motile cells in the electric field. Galvanotaxis is not due to EF force and does not depend on cell or fragment size. We propose a "compass" model according to which protrusive and contractile actomyosin networks self-polarize to the front and rear of the motile cell, respectively, and the electric signal orients both networks toward cathode with different strengths.
机译:细胞-触角神经对电场(EF)的感应在伤口愈合[1],发育[2],细胞分裂,神经生长和血管生成[3]中很重要。不同的细胞类型在EF中以相反的方向迁移[4],而同一细胞可以根据条件切换方向[5]。多个信号传导途径之间的拔河机制[6]可以将网柄菌属细胞引导至阴极或阳极。在鱼类角膜细胞中,运动的机理最简单,因此我们转向角膜细胞研究其在EFs中的迁移。角质形成细胞感应电场并迁移到阴极[7,8]。角质形成细胞碎片[9,10]是最简单的运动单位。来自白细胞的细胞碎片能够响应趋化信号[11],但是尚不清楚细胞碎片是否为催乳剂。我们发现角化细胞碎片是最小的运动电场感应单位:它们向整个细胞的相反方向迁移到阳极。肌球蛋白II对于片段的方向感是必不可少的,但对于亲代细胞却不是,而PI3激酶对于整个细胞的方向感是必不可少的,但对于片段而言则不是。因此,两种信号转导途径竞争一种在电场中定向运动细胞,一种依赖于PI3K,另一种依赖于肌球蛋白。 galnotnotaxis不是由于EF力,也不取决于细胞或碎片的大小。我们提出了一种“罗盘”模型,根据该模型,突出的和收缩的肌动球蛋白网络分别自极化到运动细胞的前部和后部,并且电信号使这两种网络朝向具有不同强度的阴极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号