首页> 外文期刊>Colloids and Surfaces, A. Physicochemical and Engineering Aspects >Smectite clay microstructural behaviour on the Atterberg limits transition
【24h】

Smectite clay microstructural behaviour on the Atterberg limits transition

机译:Atterberg界限过渡上的蒙脱石粘土微观结构行为

获取原文
获取原文并翻译 | 示例
           

摘要

Particle space arrangement is a very important factor that determines the physico-mechanical properties of soil. Formations of three-dimensional (3D) structured networks within gelled or flocculated suspension may prevent clay particles and aggregates from building dense aggregates and by encapsulate water within the ultrathin and closed void network, lead to poor sludge dewatering. To better understand the water retention behaviour of smectite-rich clays, a microstructural investigation was conducted on Amcol Australian bentonite in aqueous suspension in near the liquid limit (LL) and the plastic limit (PL). The investigation was conducted with the aid of synchrotron-powered transmission X-ray microscope tomography (TXM), with subsequent computer reconstruction. Images from the microscopy studies were statistically analysed using the STatistical IMage ANalysing (STIMAN) system. The study found that clay particles form a spanned framework in which mineral particles, aggregates and water-filled voids assemble as hierarchic structural elements. The size of these structural elements was larger in the water suspension and subsequently became smaller as an effect of water loss in the suspension > liquid and > plastic limit conditions. The clay suspension structure was almost isometric, with a low anisotropy coefficient: K-alpha - 9%. This parameter increased to K-alpha - 17% in (LL) and increased further in (PL) conditions to K-alpha - 35%. Voids within structural elements were much smaller than the water filled inter-flock voids, with their median diameter 140 nm (suspension), 120 nm (LL) and 90 nm (PL). Significant differences in Atterberg limits values were observed between powder freshly mixed with water and a seasoned sample. Therefore, careful consideration of the sample mineral composition, clay content and genesis must be given due to preparation for geotechnical examination. (C) 2014 Elsevier B.V. All rights reserved.
机译:粒子空间排列是决定土壤物理力学性质的一个非常重要的因素。在胶凝或絮凝的悬浮液中形成三维(3D)结构化网络可能会阻止粘土颗粒和骨料形成致密的骨料,并通过将水包裹在超薄和封闭的空隙网络中而导致污泥脱水不良。为了更好地理解富含绿土的粘土的保水性能,对Amcol澳大利亚膨润土在水悬浮液(LL)和塑性极限(PL)附近的水悬浮液进行了微观结构研究。这项研究是借助同步加速器透射X射线显微镜断层扫描(TXM)进行的,随后进行了计算机重建。使用统计图像分析(STIMAN)系统对显微镜研究的图像进行统计分析。研究发现,粘土颗粒形成了一个跨度的框架,其中矿物颗粒,聚集体和充满水的空隙组装成层次结构元素。这些结构元素的尺寸在水悬浮液中较大,随后由于悬浮液中的水分流失>液体和>塑性极限条件而变小。粘土悬浮结构几乎是等轴测的,各向异性系数低:K-α-9%。此参数增加到K-alpha-(LL)为17%,在(PL)条件下进一步增加到K-alpha-35%。结构单元内的空隙比填充水的群间空隙小得多,它们的中值直径为140 nm(悬浮液),120 nm(LL)和90 nm(PL)。在刚与水混合的粉末和调味样品之间观察到Atterberg限值的显着差异。因此,由于要进行岩土工程检查,必须仔细考虑样品的矿物成分,粘土含量和成因。 (C)2014 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号