...
首页> 外文期刊>Corrosion Reviews >DETERIORATION OF SILICEOUS STONE MONUMENTS IN LATIN AMERICA: MICROORGANISMS AND MECHANISMS
【24h】

DETERIORATION OF SILICEOUS STONE MONUMENTS IN LATIN AMERICA: MICROORGANISMS AND MECHANISMS

机译:拉丁美洲硅质石的破坏:微生物和机制

获取原文
获取原文并翻译 | 示例

摘要

The microbial community present on and within stone monuments is highly varied and is subject to high and low temperatures, UV irradiation, and repeated desiccation. The mechanisms of the biodegradation of stone commonly thought to be important are acid- and base-induced dissolution of silica and mobilization of cations by chelation. The endolithic and epilithic microbial communities produce polyols as osmotic protectants (osmolytes) in response to desiccation. Low molecular weight polyols and polysaccharides (high molecular weight polyols) bind to the siloxane layers within layered siliceous minerals, such as micas and soapstone, by hydrogen bonding. These interlaminar complexes cause expansion of the crystalline layer, weakening the structure, and may allow entry of chelating agents, which mobilise the ions stabilising the crystal structure. During periods of desiccation, polyols become concentrated, forming non-aqueous systems where the chemistry of Lewis acids and bases must be considered. Basic catalysis in such water deficient ecosystems will favour the formation of water soluble organosilicon compounds, principally organic siloxanes. Such ecosystems with low water activity are common in all dry environments. Polyols and complex organic acids can attack siliceous minerals under alkaline conditions. Extracellular carbohydrate polymers released by fungi and, especially, bacteria can react with inorganic siloxanes to form water soluble organic siloxanes. Extracellular polymers on the surface also prolong water residence time, increasing the duration of the chemical reactions causing silicate weathering. The final result of all of these activities is the expansion of the rock or stone and spalling of the surface layers from the weakened material behind the spalling layer.
机译:存在于石碑上及其内部的微生物群落千差万别,易受高温和低温,紫外线辐射和反复干燥的影响。通常认为很重要的石头生物降解机理是酸和碱诱导的二氧化硅溶解和通过螯合使阳离子动员。内层和上层微生物群落响应于干燥而产生多元醇作为渗透保护剂(渗透物)。低分子量多元醇和多糖(高分子量多元醇)通过氢键与层状硅质矿物(如云母和滑石)中的硅氧烷层结合。这些层间复合物引起晶体层的膨胀,削弱了结构,并且可能允许螯合剂进入,螯合剂动员了稳定晶体结构的离子。在干燥期间,多元醇会浓缩,形成非水体系,必须考虑路易斯酸和碱的化学性质。在这种缺水生态系统中的基本催化作用将有助于形成水溶性有机硅化合物,主要是有机硅氧烷。这种水分活度低的生态系统在所有干燥环境中都很常见。多元醇和复杂的有机酸可在碱性条件下侵蚀硅质矿物。由真菌,尤其是细菌释放的细胞外碳水化合物聚合物可以与无机硅氧烷反应形成水溶性有机硅氧烷。表面上的细胞外聚合物还延长了水的停留时间,增加了引起硅酸盐风化的化学反应的持续时间。所有这些活动的最终结果是岩石或石头的膨胀以及剥落层后面的弱化材料造成的表层剥落。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号