首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >Carbon based substrates for interfacing neurons: Comparing pristine with functionalized carbon nanotubes effects on cultured neuronal networks
【24h】

Carbon based substrates for interfacing neurons: Comparing pristine with functionalized carbon nanotubes effects on cultured neuronal networks

机译:用于神经元接口的碳基基质:比较原始蛋白和功能化碳纳米管对培养的神经元网络的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Pristine (as prepared) carbon nanotube (CNT) based substrates have been widely used to grow and interface neurons in culture. Nerve cells normally differentiate on CNTs and the synaptic networks, newly formed at the interface with this material, usually show an improved robustness in signal transfer. However manipulation of pristine CNTs is often prevented by their low dispersibility and tendency to aggregate in most solvents. This issue can be at least partially solved by adding solubilizing groups to the surface of CNT, which also helps improving their biocompatibility. It becomes therefore of crucial importance to determine whether chemically manipulated CNTs may maintain their performance in improving nerve signaling. Here we study and compare the impact in vitro on neuronal signaling of two classes of chemically modified multiwalled CNTs in reference to pristine CNTs, which are known to be a substrate able to boost neuronal growth and communication. We found that the extent of functionalization and the nature of the functional groups on MWNT sidewalls affect the conductivity and the biological effects of the final derivatives. This information is important for the future design of biointegrated devices. (C) 2015 Elsevier Ltd. All rights reserved.
机译:原始的(已准备好的)基于碳纳米管(CNT)的底物已被广泛用于培养中的神经元并与之接触。神经细胞通常在CNT上分化,并且在与这种材料的界面处新形成的突触网络通常在信号传递中表现出更高的鲁棒性。但是,通常由于原始CNT的低分散性和在大多数溶剂中的聚集趋势而无法对其进行操作。通过向CNT表面添加增溶基团,可以至少部分解决该问题,这也有助于改善其生物相容性。因此,至关重要的是确定化学处理的CNT是否可以维持其在改善神经信号传导方面的性能。在这里,我们研究和比较原始碳纳米管对两类化学修饰的多壁碳纳米管在体外对神经元信号传导的影响,这些碳纳米管已知是能够促进神经元生长和交流的基质。我们发现,功能化程度和MWNT侧壁上官能团的性质会影响最终衍生物的电导率和生物学效应。此信息对于生物集成设备的未来设计很重要。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号