首页> 外文期刊>Carbon: An International Journal Sponsored by the American Carbon Society >A combined salt-hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance
【24h】

A combined salt-hard templating approach for synthesis of multi-modal porous carbons used for probing the simultaneous effects of porosity and electrode engineering on EDLC performance

机译:盐-硬模板法的组合方法,用于合成多峰多孔碳,用于探测孔隙率和电极工程对EDLC性能的同时影响

获取原文
获取原文并翻译 | 示例
           

摘要

A new approach, based on a combination of salt and hard templating for producing multimodal porous carbons is demonstrated. The hard template, silica nanoparticles, generate mesopores (similar to 22 nm), and in some cases borderline-macropores (similar to 64 nm), resulting in high pore volume (similar to 3.9 cm(3)/g) while the salt template, zinc chloride, generates borderline-mesopores (similar to 2 nm), thus imparting high surface area (similar to 2100 m(2)/g). The versatility of the proposed synthesis technique is demonstrated using: (i) dual salt templates with hard template resulting in magnetic, nanostructured-day embedded (similar to 27% clay content), high surface area (similar to 1527 m(2)/g) bimodal carbons (similar to 2 and 70 nm pores), (ii) multiple hard templates with salt template resulting in tri-modal carbons (similar to 2, 12 and 28 nm pores), (iii) low temperature (450 degrees C) synthesis of bimodal carbons afforded by the presence of hygroscopic salt template, (iv) easy coupling with physical activation approaches. A selected set of thus synthesized carbons were used to evaluate, for the first time, the simultaneous effects of carbon porosity and pressure applied during electrode fabrication on EDLC performance. Electrode pressing was found to be more favorable for carbons containing hard-templated mesopores (similar to 87% capacitance retention at current density of 40 A/g) as compared to those without (similar to 54% capacitance retention). (C) 2015 Elsevier Ltd. All rights reserved.
机译:演示了一种新的方法,该方法基于盐和硬模板的组合来生产多峰多孔碳。坚硬的模板二氧化硅纳米颗粒会产生中孔(类似于22 nm),在某些情况下会产生边界大孔(类似于64 nm),从而导致高孔体积(类似于3.9 cm(3)/ g),而盐模板,氯化锌,产生边界-中孔(类似于2 nm),从而赋予高表面积(类似于2100 m(2)/ g)。使用以下方法论证了所提出的合成技术的多功能性:(i)具有硬模板的双盐模板,导致磁性,纳米结构化天嵌入(约27%粘土含量),高表面积(约1527 m(2)/ g )双峰碳(类似于2和70 nm的孔),(ii)具有盐模板的多个硬模板导致三峰碳(类似于2,12和28 nm的孔),(iii)低温(450摄氏度)吸水盐模板的存在提供了双峰碳的合成,(iv)易于与物理活化方法结合。如此选择的一组合成碳首次用于评估碳孔隙率和电极制造过程中施加的压力对EDLC性能的同时影响。相比于没有硬模板介孔的碳(在电流密度为40 A / g时,电容保持率大约为87%),相比于没有硬模孔的碳(保持电容率为54%),电极压制更为有利。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号