首页> 外文期刊>Chemical Engineering Science >Enhancing catalyst effectiveness by increasing catalyst film thickness in coated-wall microreactors: Exploiting heat effects in catalytic methane steam micro-reformers
【24h】

Enhancing catalyst effectiveness by increasing catalyst film thickness in coated-wall microreactors: Exploiting heat effects in catalytic methane steam micro-reformers

机译:通过增加涂层壁微反应器中的催化剂膜厚度来提高催化剂效率:利用催化甲烷蒸汽微重整器中的热效应

获取原文
获取原文并翻译 | 示例
           

摘要

The potential for increasing endothermic reforming process capacity of a heat-exchanger microreactor without compromising thermal or catalyst efficiency via employing unconventionally-thick catalyst washcoatings is investigated. This is achievable through exploiting the "internal" heating of the catalyst film, i.e. existence of a non-zero heat flux at the wall-catalyst interface at the inner boundary of the film, which is a characteristic of the heat-exchanger microreactor design. Classical one-dimensional analysis of non-isothermal reaction and diffusion in an internally-heated catalyst film identifies minimum values for Prater Temperature and dimensionless activation energy required for internal accumulation of applied heat to be effectively utilized. Under such conditions, analysis confirms the existence of a range of Thiele Moduli, or catalyst film thicknesses, corresponding to complete utilization of internally-supplied heat at catalyst effectiveness greater than unity. Subsequent application of these design rules to a previously validated computational fluid dynamic (CFD) model of an industrial annular micro-channel reformer (AMR) for methane steam reforming confirm that increasing catalyst film thicknesses to values corresponding to Thiele Modulus greater than unity enables intensification of the microreactor performance via increasing reforming capacity while maintaining equivalent thermal efficiency and retaining competitive catalyst effectivenesses. (C) 2016 Elsevier Ltd. All rights reserved.
机译:研究了通过使用非常规厚度的催化剂修补基面涂层来增加热交换器微反应器的吸热重整工艺能力而不损害热效率或催化剂效率的潜力。这可以通过利用催化剂膜的“内部”加热来实现,即在膜的内边界处的壁-催化剂界面处存在非零热通量,这是热交换器微反应器设计的特征。对内部加热的催化剂膜中非等温反应和扩散的经典一维分析确定了普拉特温度的最小值以及有效利用热量内部积累所需的无因次活化能。在这样的条件下,分析证实存在一定范围的Thiele模数或催化剂膜厚度,这对应于内部提供的热量在催化剂效力大于1时的完全利用。这些设计规则的后续应用到用于甲烷蒸汽重整的工业环形微通道重整器(AMR)的先前验证的计算流体力学(CFD)模型中,确认将催化剂膜厚度增加到对应于Thiele模量大于1的值可增强反应强度。通过提高重整能力,同时保持同等的热效率并保持竞争性催化剂有效性,微反应器的性能。 (C)2016 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号