...
首页> 外文期刊>Chemical Engineering Science >Transport-shifted multi-component non-ideal acid dew-point predictions and generalization/application of the mist-onset 'tangency condition' for ideal vapor mixtures near cool surfaces
【24h】

Transport-shifted multi-component non-ideal acid dew-point predictions and generalization/application of the mist-onset 'tangency condition' for ideal vapor mixtures near cool surfaces

机译:迁移转移的多组分非理想酸露点预测和薄雾起始“切线条件”的推广/应用,用于靠近冷表面的理想蒸气混合物

获取原文
获取原文并翻译 | 示例
           

摘要

Anticipating condensation conditions at solid surfaces or within thermal boundary layers is important in many industrial applications involving condensible vapor flows in contact with cooler solid surfaces. In the case of hydrocarbon fuel/air combustion products at moderate pressures containing acid precursor species (like NO2, SO3, HCl, etc.) surfaces that operate below the prevailing "acid dew point" (ADP) temperature (which can be significantly higher than the DP expected for H2O alone) become vulnerable to chemical attack. Surfaces cold enough to cause acid "mist" onset (AMO) in the vapor phase create potential environmental problems and become much less efficient for condensate capture. Previous methods for estimating ADP and AMO have several drawbacks, the most prominent of which are: limitation to one acid precursor species, dependence on a local curve lit to earlier thermodynamic ADP calculations, absence of systematic transport effects associated with the local temperature gradient, and "silence" about the resulting liquid add composition. Our present, more fundamental, approach overcomes each of these limitations and yet, will be seen to remain tractable from an engineering viewpoint. While we illustrate our methods for the case of a prototypical ternary (N=3) acid condensate (highly non ideal liquid mixture of H2O + HNO3 + H2SO4) produced from a high temperature ideal gas mixture containing H2O(g) and much smaller concentrations of the aqueous acid precursors: NO2, SO3 (or HNO3(g) and H2SO4(g)), our methods can be formally extended to N = 4,5,... if one has access to VLE data for each of the N(N - 1)/2 participating binary systems (if the resulting N-component liquid mixture does not itself phase-separate). Our present results also properly reduce horn the N-component case to the N-1 case, hence even to the singular case: N=1 (i.e., the DP- and MO-conditions for pure water in the absence of any acid precursor). Because some of the vapor species of interest (e.g., H2O, HNO3, and H2SO4) have molecular weights rather different from the mean molecular weight of the flue gases, Ludwig-Soret transport effects can become non-negligible (in the presence of the temperature gradients expected for high temperature combustion products) both T-W(ADP) and T-W(AMO) will often be seen to be "transport-shifted", although, as discussed in Appendices A, B, in many cases these effects are complicated by the thermal instability of the largest precursor molecules. Further extensions of likely future interest (e.g., effects of homogeneous chemistry within the thermal boundary layer where molecules like HNO3 and H2SO4 may have to be assembled from their lighter precursors: the effects of nucleation kinetic barriers and/or vapor phase non-ideality) are also identified and are the subject of our ongoing research. (C) 2015 Published by Elsevier Ltd.
机译:在许多涉及与较冷的固体表面接触的可冷凝蒸气流的工业应用中,预测固体表面或热边界层内的冷凝条件很重要。在中等压力下的烃类燃料/空气燃烧产物中,含有酸性前体物质(例如NO2,SO3,HCl等)的表面工作在低于普遍的“酸露点”(ADP)温度以下(可以大大高于(仅用于H2O的DP)容易受到化学侵蚀。足够冷的表面会在气相中引起酸“雾”发作(AMO),这会带来潜在的环境问题,并且冷凝物捕集的效率大大降低。先前的估算ADP和AMO的方法有几个缺点,其中最突出的是:对一种酸前体物质的限制,依赖于早期热力学ADP计算的局部曲线,缺乏与局部温度梯度相关的系统传输效应以及关于所得液体添加组合物的“沉默”。我们目前更基本的方法克服了这些限制中的每一个,但是,从工程角度看,它仍然是易于处理的。虽然我们举例说明了由高温理想气体混合物(其中含有H2O(g)和更小浓度的H2O)生成的典型三元(N = 3)酸冷凝物(H2O + HNO3 + H2SO4的高度非理想液体混合物)的情况。水性酸前体:NO2,SO3(或HNO3(g)和H2SO4(g)),我们的方法可以正式扩展为N = 4,5,...如果可以访问每个N( N-1)/ 2个参与的二元体系(如果所得的N组分液体混合物本身未发生相分离)。我们目前的结果也将N组分的情况适当地减少到N-1情况,因此甚至减少到单数情况:N = 1(即,在没有任何酸前体的情况下,纯水的DP和MO条件) 。由于某些感兴趣的蒸汽物质(例如H2O,HNO3和H2SO4)的分子量与烟道气的平均分子量相差很大,因此路德维希-苏雷特的输运作用可以忽略不计(在存在温度的情况下)。 TW(ADP)和TW(AMO)所期望的高温燃烧产物的梯度变化通常被认为是“运输转移”的,尽管如附录A,B所述,在许多情况下,这些影响因热而复杂化。最大前体分子的不稳定性。未来可能会引起关注的进一步扩展(例如,热边界层内的均相化学作用,在该作用下,像HNO3和H2SO4之类的分子可能必须由其较轻的前体组装而成:成核动力学势垒和/或气相非理想化的影响)也已确定并且是我们正在进行的研究的主题。 (C)2015由Elsevier Ltd.出版

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号