...
首页> 外文期刊>Chemical Engineering Science >Prediction of mass transfer coefficients in a slurry bubble column based on the geometrical characteristics of bubbles ☆
【24h】

Prediction of mass transfer coefficients in a slurry bubble column based on the geometrical characteristics of bubbles ☆

机译:基于气泡的几何特性预测浆料气泡塔中的传质系数☆

获取原文
获取原文并翻译 | 示例
           

摘要

The experimental volumetric liquid-phase mass transfer coefficients k_La measured in a slurry bubble column (0.095 m in ID) operated with several three-phase systems (air-ligroin-polyvinylchloride (PVC), air-ligroin-polyethyIene (PE) and air-water-activated carbon) were predicted successfully based on a correction of Higbie's (1935) penetration theory. A correction factor (which is a single function of the E?tv?s number) developed earlier (Nedeltchev et aL,2007) in gas-liquid bubble columns was found applicable to slurry bubble columns. It varied from 0.22 to 1.91 in the above-mentioned three-phase systems. As the bubble size becomes bigger, the correction factor increases and vice versa.The two major changes in the algorithm (applied to slurry bubble columns) are associated with the calculation of the Sauter-mean bubble diameter (Lemoine et al., 2008) and the gas-liquid interfacial area. In the case of a slurry bubble column, both the slurry density and effective viscosity were used in the model correlations. It was found that the model yielded good results not only in the homogeneous regime but also in the heterogeneous regime (up to gas velocities of 0.08 m/s). It worked also well at relatively high solids concentrations (up to 15%). When the bubble Reynolds number is higher than 700 and when the superficial gas velocity is beyond 0.04 m/s, then the penetration theory based on the new definition of the contact time can be applied straightforwardly (without any correction factor). The developed model is applicable to ellipsoidal bubbles and it demonstrates the important effect of the geometrical characteristics (length and height) of these bubbles on the mass transfer coefficients
机译:在浆液气泡塔(内径0.095 m)中测量的实验性液相液相传质系数k_La,采用多种三相系统(空气-木质素-聚氯乙烯(PVC),空气-木质素-聚乙烯(PE)和空气-基于Higbie(1935)渗透理论的修正,成功地预测了水活化碳)。发现在气液鼓泡塔中较早开发的校正因子(E ETV数的一个函数)(Nedeltchev等,2007)适用于浆料鼓泡塔。在上述三相系统中,它从0.22到1.91不等。随着气泡尺寸变大,校正因子增加,反之亦然。算法的两个主要变化(适用于浆液气泡塔)与Sauter平均气泡直径的计算有关(Lemoine et al。,2008)和气液界面面积。对于浆料鼓泡塔,在模型关联中同时使用了浆料密度和有效粘度。发现该模型不仅在均质状态下而且在非均质状态下(高达0.08 m / s的气体速度)都产生了良好的结果。在相对较高的固体浓度(最高15%)下,它也能很好地发挥作用。当气泡雷诺数大于700且表观气体速度超过0.04 m / s时,可以直接应用基于新的接触时间定义的渗透理论(无任何校正因子)。所开发的模型适用于椭圆形气泡,并且证明了这些气泡的几何特性(长度和高度)对传质系数的重要影响

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号