首页> 外文期刊>Chemical engineering journal >Reduced overpotentials in microbial electrolysis cells through improved design, operation, and electrochemical characterization
【24h】

Reduced overpotentials in microbial electrolysis cells through improved design, operation, and electrochemical characterization

机译:通过改进设计,操作和电化学表征,减少微生物电解池中的过电势

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

One of the main performance challenges in microbial electrochemical cells (MXCs) is the low voltage efficiency in comparison to other fuel and electrolysis cells. In this study, we aimed to improve the design and operation of microbial electrolysis cells (MECs) to achieve current densities >10 A m(-2) with reduced applied voltages, using a thorough analytical framework involving electrochemical techniques such as chronoamperometry, voltammetry and electrochemical impedance spectroscopy. We developed a design that allows high surface area for the anode using carbon fibers, but without creating a large distance between the anode and the cathode (<0.5 cm) to reduce Ohmic overpotential. We determined that Ohmic overpotential, at current densities >10 A m(-2) remained <0.1 V even when using an anion exchange membrane to separate the anode and the cathode. We observed the largest overpotential from cathode related phenomena. The increase in pH in the cathode chamber, often to similar to 13, results in >0.3 V of Nernstian concentration overpotential. We showed how by adding CO2 to the cathode, this overpotential could be reduced to negligible. We also tested two different cathode materials - stainless steel and nickel - to compare the cathode activation overpotentials. Overall, through our design and operation improvements, we were able to reduce the applied voltages from 1.1 to 0.85 V, at 10 A m(2). Our results also provide important guidelines for further optimizations of MXCs. (C) 2015 Elsevier B.V. All rights reserved.
机译:与其他燃料电池和电解电池相比,微生物电化学电池(MXC)的主要性能挑战之一是低电压效率。在这项研究中,我们旨在使用涉及电化学技术的精密分析框架(如计时电流法,伏安法和伏安法),改进微生物电解池(MEC)的设计和操作,以降低电流施加的电流密度> 10 A m(-2)。电化学阻抗谱。我们开发了一种设计,该设计允许使用碳纤维的阳极具有较大的表面积,但又不会在阳极和阴极之间形成较大的距离(<0.5 cm)以减少欧姆超电势。我们确定,即使使用阴离子交换膜分离阳极和阴极,在电流密度> 10 A m(-2)时,欧姆过电势仍保持<0.1V。我们从阴极相关现象中观察到最大的超电势。阴极室中pH的增加通常类似于13,导致Nernstian浓度超电势大于0.3V。我们展示了如何通过向阴极添加CO2来将这种超电势降低到可以忽略的程度。我们还测试了两种不同的阴极材料-不锈钢和镍-以比较阴极活化超电势。总体而言,通过我们的设计和操作改进,我们能够将施加的电压从1.1 A降低到0.85 V(10 A m(2))。我们的结果也为进一步优化MXC提供了重要指导。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号