...
首页> 外文期刊>Continental Shelf Research: A Companion Journal to Deep-Sea Research and Progress in Oceanography >Scalar transport in large-eddy simulation of Langmuir turbulence in shallowwater
【24h】

Scalar transport in large-eddy simulation of Langmuir turbulence in shallowwater

机译:浅水Langmuir湍流大涡模拟中的标量输运。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Large-eddy simulations (LES) of wind-driven shallow water flows with Langmuir turbulence have been conducted and scalar transport and surface scalar transfer dynamics analyzed. In these flows, the largest scales of the Langmuir turbulence consist of full-depth Langmuir circulation (LC), parallel downwind-elongated, counter-rotating vortices acting as a secondary structure to the mean flow. Langmuir turbulence is generated by the interaction of the wind-driven shear current with the Stokes drift velocity induced by surface gravity waves. In the absence of resolved surface waves, the Langmuir turbulence-generating mechanism is parameterized via the well-known Craik-Leibovich vortex force (Craik and Leibovich, 1976) appearing in the momentum equation. Simulations do not resolve surface waves, thus the top of the domain is taken as a non-deforming, free-slip, wind shear-driven surface. LES guided by the full-depth LC field measurements of Gargett and Wells (2007) shows that Langmuir turbulence plays a major role in determining scalar transport throughout the entire water column and scalar transfer at the surface. Langmuir turbulence affects scalar transport and its surface transfer through (1) full-depth, large-scale LC and (2) near-surface, small-scale eddies. Two key parameters controlling the extent of these two mechanisms are (1)the ratio λ?=λ/H, where λ is the dominant wavelength of the surface waves generating the turbulence and H is the mean water column depth and (2)the turbulent Langmuir number, La_t, which is inversely proportional to wave forcing relative to wind forcing. Results from simulations with varying combinations of λ? and Lat are analyzed in order to understand the effect of these two parameters on scalar dynamics.
机译:已经进行了风驱动的浅水流与朗缪尔湍流的大涡模拟(LES),并分析了标量传输和表面标量传递动力学。在这些流中,朗缪尔湍流的最大尺度包括全深度朗缪尔环流(LC),平行的顺风伸长,反向旋转的涡流,是平均流的次级结构。朗格缪尔湍流是由风切变气流与表面重力波引起的斯托克斯漂移速度的相互作用产生的。在没有分解的表面波的情况下,通过出现在动量方程中的众所周知的Craik-Leibovich涡力(Craik和Leibovich,1976)对Langmuir湍流产生机理进行参数化。模拟不能解决表面波,因此将域的顶部视为非变形,自由滑动,风切变驱动的表面。由Gargett和Wells(2007)进行的全深度LC现场测量指导的LES表明,朗格缪尔湍流在确定整个水柱中的标量传输和地表标量传递方面起着重要作用。朗缪尔湍流通过(1)全深度大型LC和(2)近表面小规模涡流影响标量传输及其表面转移。控制这两种机制程度的两个关键参数是(1)比率λ?=λ/ H,其中λ是产生湍流的表面波的主波长,H是平均水柱深度,以及(2)湍流朗缪尔数La_t,它与波浪强迫成反比,与风力强迫成反比。不同λ?组合的模拟结果为了了解这两个参数对标量动力学的影响,对Lat和Lat进行了分析。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号