...
首页> 外文期刊>Brain research >Making sense of AMPA receptor trafficking by modeling molecular mechanisms of synaptic plasticity.
【24h】

Making sense of AMPA receptor trafficking by modeling molecular mechanisms of synaptic plasticity.

机译:通过建模突触可塑性的分子机制,了解AMPA受体的运输。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Synaptic plasticity involves a complex molecular machinery with various protein interactions but it is not yet clear how its components give rise to the different aspects of synaptic plasticity. Here we ask whether it is possible to mathematically model synaptic plasticity by making use of known substances only. We present a model of a multistable biochemical reaction system and use it to simulate the plasticity of synaptic transmission in long-term potentiation (LTP) or long-term depression (LTD) after repeated excitation of the synapse. According to our model, we can distinguish between two phases: first, a "viscosity" phase after the first excitation, the effects of which like the activation of NMDA receptors and CaMKII fade out in the absence of further excitations. Second, a "plasticity" phase actuated by an identical subsequent excitation that follows after a short time interval and causes the temporarily altered concentrations of AMPA subunits in the postsynaptic membrane to be stabilized. We show that positive feedback is the crucial element in the core chemical reaction, i.e. the activation of the short-tail AMPA subunit by NEM-sensitive factor, which allows generating multiple stable equilibria. Three stable equilibria are related to LTP, LTD and a third unfixed state called ACTIVE. Our mathematical approach shows that modeling synaptic multistability is possible by making use of known substances like NMDA and AMPA receptors, NEM-sensitive factor, glutamate, CaMKII and brain-derived neurotrophic factor. Furthermore, we could show that the heteromeric combination of short- and long-tail AMPA receptor subunits fulfills the function of a memory tag.
机译:突触可塑性涉及具有多种蛋白质相互作用的复杂分子机制,但尚不清楚其成分如何引起突触可塑性的不同方面。在这里,我们问是否有可能仅通过使用已知物质来对突触可塑性进行数学建模。我们提出了一个多稳态生化反应系统的模型,并使用它来模拟在反复激发突触后长期增强(LTP)或长期抑郁(LTD)中突触传递的可塑性。根据我们的模型,我们可以区分两个阶段:首先是第一次激发后的“粘度”阶段,其影响如NMDA受体和CaMKII的激活在没有进一步激发的情况下会消失。其次,在短的时间间隔之后,由相同的后续激发所致动的“可塑性”阶段,使突触后膜中AMPA亚基的暂时改变浓度得以稳定。我们表明,正反馈是核心化学反应中的关键要素,即NEM敏感因子激活短尾AMPA亚基,从而允许产生多个稳定的平衡。三个稳定的平衡与LTP,LTD有关,而第三个未固定状态称为ACTIVE。我们的数学方法表明,通过使用已知物质(例如NMDA和AMPA受体,NEM敏感因子,谷氨酸,CaMKII和脑源性神经营养因子)来建模突触多重稳定性是可能的。此外,我们可以证明短尾和长尾AMPA受体亚基的异源组合可实现记忆标签的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号