首页> 外文期刊>Biomaterials >A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ
【24h】

A transient cell-shielding method for viable MSC delivery within hydrophobic scaffolds polymerized in situ

机译:一种瞬态细胞屏蔽方法,用于在原位聚合的疏水支架内进行可行的MSC递送

获取原文
获取原文并翻译 | 示例
           

摘要

Cell-based therapies have emerged as promising approaches for regenerative medicine. Hydrophobic poly(ester urethane)s offer the advantages of robust mechanical properties, cell attachment without the use of peptides, and controlled degradation by oxidative and hydrolytic mechanisms. However, the application of injectable hydrophobic polymers to cell delivery is limited by the challenges of protecting cells from reaction products and creating a macroporous architecture post-cure. We designed injectable carriers for cell delivery derived from reactive, hydrophobic polyisocyanate and polyester triol precursors. To overcome cell death caused by reaction products from in situ polymerization, we encapsulated bone marrow-derived stem cells (BMSCs) in fastdegrading, oxidized alginate beads prior to mixing with the hydrophobic precursors. Cells survived the polymerization at >70% viability, and rapid dissolution of oxidized alginate beads after the scaffold cured created interconnected macropores that facilitated cellular adhesion to the scaffold in vitro. Applying this injectable system to deliver BMSCs to rat excisional skin wounds showed that the scaffolds supported survival of transplanted cells and infiltration of host cells, which improved new tissue formation compared to both implanted, pre-formed scaffolds seeded with cells and acellular controls. Our design is the first to enable injectable delivery of settable, hydrophobic scaffolds where cell encapsulation provides a mechanism for both temporary cytoprotection during polymerization and rapid formation of macropores post-polymerization. This simple approach provides potential advantages for cell delivery relative to hydrogel technologies, which have weaker mechanical properties and require incorporation of peptides to achieve cell adhesion and degradability. (C) 2015 Elsevier Ltd. All rights reserved.
机译:基于细胞的疗法已经成为再生医学的有前途的方法。疏水性聚(酯氨基甲酸酯)具有以下优点:机械性能强,不使用肽即可附着细胞,并通过氧化和水解机制控制降解。然而,可注射疏水性聚合物在细胞递送中的应用受到保护细胞免受反应产物和在固化后形成大孔结构的挑战的限制。我们设计了从反应性,疏水性多异氰酸酯和聚酯三醇前体衍生的用于细胞递送的可注射载体。为了克服由原位聚合反应产物引起的细胞死亡,我们在与疏水性前体混合之前,将骨髓来源的干细胞(BMSC)封装在快速降解的氧化藻酸盐珠中。细胞在> 70%的生存力下能在聚合中存活下来,在支架固化后,氧化藻酸盐珠粒会快速溶解,形成相互连接的大孔,从而促进细胞在体外与支架的粘附。应用这种可注射系统将BMSCs递送至大鼠切除的皮肤伤口表明,该支架可支持移植细胞的存活和宿主细胞的浸润,与植入细胞的预成型支架和无细胞对照相比,可改善新的组织形成。我们的设计是第一个可注射递送可凝固的疏水性支架的设计,其中细胞封装为聚合过程中的临时细胞保护和聚合后大孔的快速形成提供了一种机制。相对于水凝胶技术,这种简单的方法为细胞传递提供了潜在的优势,而水凝胶技术的机械性能较弱,需要掺入肽才能实现细胞粘附和降解。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号