首页> 外文期刊>Biochemistry >Cooperation between Catalytic and DNA Binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases
【24h】

Cooperation between Catalytic and DNA Binding Domains Enhances Thermostability and Supports DNA Synthesis at Higher Temperatures by Thermostable DNA Polymerases

机译:催化域和DNA结合域之间的合作增强了热稳定性,并通过热稳定的DNA聚合酶支持高温下的DNA合成

获取原文
获取原文并翻译 | 示例
       

摘要

We have previously introduced a general kinetic approach forcomparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.
机译:我们先前已经介绍了一种通用的动力学方法,用于比较研究可加工性,热稳定性和对DNA聚合酶抑制剂的抗性[Pavlov,A. R.,et al。 (2002年)过程。 Natl。学院科学美国专利99,13510-13515]。所提出的方法已成功应用于表征通过将催化DNA聚合酶结构域与各种序列-非特异性DNA结合结构域融合而创建的杂交DNA聚合酶。在这里,我们使用发达的动力学分析来评估DNA聚合酶延长DNA的基本参数,并进一步研究以前构建的和新的嵌合DNA聚合酶中的域间相互作用。我们表明,将螺旋-发夹-螺旋(HhH)域连接到催化聚合酶域可以增加热稳定性,不仅是来自极嗜热菌种的DNA聚合酶,而且还有来自嗜热嗜热芽孢杆菌的嗜热芽孢杆菌的酶。我们还证明,Topo V HhH结构域的添加通过在高温下保持DNA合成的合成能力,通过嵌合聚合酶将有效的DNA合成扩展到了105°C。我们发现,DNA聚合酶中可逆的高温结构转变降低了这些酶与模板的结合率。此外,Arrhenius方程的活化能和指数前因子表明,扩散控制的缔合的静电增强机制在模板与DNA聚合酶的结合中起次要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号