...
首页> 外文期刊>Biochemistry >Structure and Dynamics of Mycobacterium tuberculosis Truncated Hemoglobin N: Insights from NMR Spectroscopy and Molecular Dynamics Simulations
【24h】

Structure and Dynamics of Mycobacterium tuberculosis Truncated Hemoglobin N: Insights from NMR Spectroscopy and Molecular Dynamics Simulations

机译:结核分枝杆菌截短的血红蛋白N的结构和动力学:NMR光谱和分子动力学模拟的见解

获取原文
获取原文并翻译 | 示例
           

摘要

The potent nitric oxide dioxygenase (NOD) activity (trHbN-Fe~(2+)-O_2 + ~·NO → trHbN-Fe~(3+)-OH_2 + NO_3 ~-) of Mycobacterium tuberculosis truncated hemoglobin N (trHbN) protects aerobic respiration from inhibition by ~·NO. The high activity of trHbN has been attributed in part to the presence of numerous short-lived hydrophobic cavities that allow partition and diffusion of the gaseous substrates ~·NO and O_2 to the active site. We investigated the relation between these cavities and the dynamics of the protein using solution NMR spectroscopy and molecular dynamics (MD). Results from both approaches indicate that the protein is mainly rigid with very limited motions of the backbone N-H bond vectors on the picoseconds-nanoseconds time scale, indicating that substrate diffusion and partition within trHbN may be controlled by side-chains movements. Model-free analysis also revealed the presence of slow motions (microseconds-milliseconds), not observed in MD simulations, for many residues located in helices B and G including the distal heme pocket Tyr33(B10). All currently known crystal structures and molecular dynamics data of truncated hemoglobins with the so-called pre-A N-terminal extension suggest a stable α-helical conformation that extends in solution. Moreover, a recent study attributed a crucial role to the pre-A helix for NOD activity. However, solution NMR data clearly show that in near-physiological conditions these residues do not adopt an α-helical conformation and are significantly disordered and that the helical conformation seen in crystal structures is likely induced by crystal contacts. Although this lack of order for the pre-A does not disagree with an important functional role for these residues, our data show that one should not assume an helical conformation for these residues in any functional interpretation. Moreover, future molecular dynamics simulations should not use an initial α-helical conformation for these residues in order to avoid a bias based on an erroneous initial structure for the N-termini residues. This work constitutes the first study of a truncated hemoglobin dynamics performed by solution heteronuclear relaxation NMR spectroscopy.
机译:结核分枝杆菌截短的血红蛋白N(trHbN)的有效一氧化氮双加氧酶(NOD)活性(trHbN-Fe〜(2 +)-O_2 +〜·NO→trHbN-Fe〜(3 +)-OH_2 + NO_3〜-)保护有氧呼吸受〜·NO抑制。 trHbN的高活性部分归因于存在许多短寿命的疏水腔,这些腔允许气态底物〜·NO和O_2分配和扩散到活性位点。我们使用溶液NMR光谱和分子动力学(MD)研究了这些空穴与蛋白质动力学之间的关系。两种方法的结果都表明,该蛋白质主要是刚性的,骨架皮层N-H键载体在皮秒-纳秒时间尺度上的运动非常有限,这表明trHbN中的底物扩散和分配可能受侧链运动控制。无模型分析还显示,对于位于螺旋B和G中的许多残基(包括远端血红素口袋Tyr33(B10)),在MD模拟中未观察到慢动作(微秒-毫秒)的存在。所有目前已知的具有所谓的A前N末端延伸的截短的血红蛋白的晶体结构和分子动力学数据都表明在溶液中延伸的稳定的α螺旋构象。此外,最近的一项研究认为,前A螺旋对于NOD活性起着至关重要的作用。但是,溶液NMR数据清楚地表明,在近乎生理条件下,这些残基不采用α-螺旋构象,并且显着无序,并且晶体结构中看到的螺旋构象可能是由于晶体接触而诱发的。尽管对pre-A的这种缺乏顺序并不反对这些残基的重要功能作用,但我们的数据表明,在任何功能解释中均不应假定这些残基具有螺旋构象。而且,未来的分子动力学模拟不应为这些残基使用初始的α-螺旋构象,以避免基于N-末端残基的错误初始结构的偏倚。这项工作构成了通过溶液异核弛豫NMR光谱对截短的血红蛋白动力学进行的首次研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号