首页> 外文期刊>Biochemistry >Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: Allosteric coupling between the T1 and trinuclear Cu sites
【24h】

Spectroscopic studies of perturbed T1 Cu sites in the multicopper oxidases Saccharomyces cerevisiae Fet3p and Rhus vernicifera laccase: Allosteric coupling between the T1 and trinuclear Cu sites

机译:多铜氧化酶酿酒酵母Fet3p和Rus vernicifera漆酶中T1 Cu位点的光谱学研究:T1和三核Cu位点之间的变构偶联

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The multicopper oxidases catalyze the 4e(-) reduction of O-2 to H2O coupled to the 1e(-) oxidation of 4 equiv of substrate. This activity requires four Cu atoms, including T1, T2, and coupled binuclear T3 sites. The T2 and T3 sites form a trinuclear cluster (TNC) where O-2 is reduced. The T1 is coupled to the TNC through a T1-Cys-His-T3 electron transfer (ET) pathway. In this study the two T3 Cu coordinating His residues which lie in this pathway in Fet3 have been mutated, H483Q, H483C, H485Q, and H485C, to study how perturbation at the TNC impacts the T1 Cu site. Spectroscopic methods, in particular resonance Raman (rR), show that the change from His to G1n to Cys increases the covalency of the T1 Cu-S Cys bond and decreases its redox potential. This study of T1-TNC interactions is then extended to Rhus vernicifera laccase where a number of well-defined species including the catalytically relevant native intermediate (NI) can be trapped for spectroscopic study. The T1 Cu-S covalency and potential do not change in these species relative to resting oxidized enzyme, but interestingly the differences in the structure of the TNC in these species do lead to changes in the T1 Cu rR spectrum. This helps to confirm that vibrations in the cysteine side chain of the T1 Cu site and the protein backbone couple to the Cu-S vibration. These changes in the side chain and backbone provide a possible mechanism for regulating intramolecular T1 to TNC ET in NI and partially reduced enzyme forms for efficient turnover.
机译:多种铜氧化酶催化O-2的4e(-)还原为H2O,再加上4当量的底物的1e(-)氧化。此活动需要四个Cu原子,包括T1,T2和耦合的双核T3位。 T2和T3位点形成三核簇(TNC),其中O-2被还原。 T1通过T1-Cys-His-T3电子转移(ET)路径耦合到TNC。在这项研究中,位于Fet3中此路径中的两个T3 Cu配位的His残基已被突变,即H483Q,H483C,H485Q和H485C,以研究TNC处的扰动如何影响T1 Cu位点。光谱方法,特别是共振拉曼光谱(rR),表明从His到G1n到Cys的变化增加了T1 Cu-S Cys键的共价性并降低了其氧化还原电位。然后,将T1-TNC相互作用的这项研究扩展到藜属漆酶,在那里可以捕获许多明确定义的物种,包括催化相关的天然中间体(NI),以进行光谱研究。相对于静止的氧化酶,这些物种中的T1 Cu-S价和电势没有变化,但是有趣的是,这些物种中TNC结构的差异确实导致了T1 Cu rR谱的变化。这有助于确认T1 Cu位点的半胱氨酸侧链中的振动和蛋白质骨架与Cu-S振动耦合。侧链和主链中的这些变化为将NI中的分子内T1调节为TNC ET和部分还原的酶形式提供了可能的机制,从而实现了有效的周转。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号