首页> 外文期刊>Biochemistry >CD and MCD Spectroscopic Studies of the Two Dps Miniferritin Proteins from Bacillus anthracis: Role of O-2 and H2O2 Substrates in Reactivity of the Diiron Catalytic Centers
【24h】

CD and MCD Spectroscopic Studies of the Two Dps Miniferritin Proteins from Bacillus anthracis: Role of O-2 and H2O2 Substrates in Reactivity of the Diiron Catalytic Centers

机译:CD和MCD光谱研究炭疽芽孢杆菌的两种Dps最小铁蛋白:O-2和H2O2底物在Diiron催化中心的反应性中的作用

获取原文
获取原文并翻译 | 示例
           

摘要

DNA protection during starvation (Dps) proteins are miniferritins found in bacteria and archaea that provide protection from uncontrolled Fe(II)/O radical chemistry; thus the catalytic sites are targets for antibiotics against pathogens, such as anthrax. Ferritin protein cages synthesize ferric oxymineral from Fe(II) and O-2/H2O2, which accumulates in the large central cavity; for Dps, H2O2 is the more common Fe(II) oxidant contrasting with eukaryotic maxiferritins that often prefer dioxygen. To better understand the differences in the catalytic sites of maxi- versus miniferritins, we used a combination of NIR circular dichroism (CD), magnetic circular dichroism (MCD), and variable-temperature, variable-field MCD (VTVH MCD) to study Fe(II) binding to the catalytic sites of the two Bacillus anthracis miniferritins: one in which two Fe(II) react with O-2 exclusively (Dps1) and a second in which both O-2 or H2O2 can react with two Fe(II) (Dps2). Both result in the formation of iron oxybiomineral. The data show a single 5- or 6-coordinate Fe(II) in the absence of oxidant; Fe(II) binding to Dps2 is 30x more stable than Dps1; and the lower limit of K-D for binding a second Fe(II), in the absence of oxidant, is 2-3 orders of magnitude weaker than for the binding of the single Fe(II). The data fit an equilibrium model where binding of oxidant facilitates formation of the catalytic site, in sharp contrast to eukaryotic M-ferritins where the binuclear Fe(II) centers are preformed before binding of O-2. The two different binding sequences illustrate the mechanistic range possible for catalytic sites of the family of ferritins.
机译:饥饿(Dps)蛋白中的DNA保护是细菌和古细菌中发现的微型铁蛋白,可提供不受不受控制的Fe(II)/ O自由基化学作用的保护;因此,催化位点是针对病原体(如炭疽)的抗生素的目标。铁蛋白蛋白笼从Fe(II)和O-2 / H2O2合成铁矿物质,这些铁矿物质聚集在大的中心腔中。与Dps相比,H2O2是更常见的Fe(II)氧化剂,而真核Maxiferritins往往更喜欢使用双氧。为了更好地了解最大铁蛋白和最小铁蛋白的催化位点之间的差异,我们使用了近红外圆二色性(CD),磁圆二色​​性(MCD)和可变温度,可变场MCD(VTVH MCD)的组合(II)结合两个炭疽芽孢杆菌小铁蛋白的催化位点:一个其中两个Fe(II)仅与O-2反应(Dps1),另一个其中O-2或H2O2都可以与两个Fe(II )(Dps2)。两者均导致形成铁氧矿物质。数据显示在不存在氧化剂的情况下,单个5或6配位的Fe(II)。 Fe(II)与Dps2的结合比Dps1稳定30倍;在没有氧化剂的情况下,与第二种Fe(II)结合的K-D下限比对单个Fe(II)的结合弱2-3个数量级。数据符合平衡模型,在该模型中氧化剂的结合促进了催化位点的形成,与真核M-铁蛋白形成鲜明对比,在真核M-铁蛋白中,双核Fe(II)中心在结合O-2之前就已经形成。两种不同的结合序列说明了铁蛋白家族催化位点的可能机理范围。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号