首页> 外文期刊>Порошковая Металлургия >The stability and heat resistant of silicides coatings on refractory metals - II: stability and heat resistance of silicides coatings on tungsten and molybdenum at the temperature of 1500-2000℃
【24h】

The stability and heat resistant of silicides coatings on refractory metals - II: stability and heat resistance of silicides coatings on tungsten and molybdenum at the temperature of 1500-2000℃

机译:难熔金属硅化物涂层的稳定性和耐热性-II:在1500-2000℃的温度下钨和钼上硅化物涂层的稳定性和耐热性

获取原文
获取原文并翻译 | 示例
       

摘要

The kinetics of diffusion redistribution of phases in the WSi{sub}2-W system under heating in air has been investigated in the wide temperature range 1500-2000 ℃. The stability and heat resistance of silicide coatings on tungsten is mainly determined by silicon diffusion towards WSi{sub}2 interfaces and by formation of the lowest-siltcide W{sub}5Si{sub}3 diffusion barriers there, as well as by production of a protective SiO{sub}2 oxide film on the outer side of the silicide coating. It is to und that the rate of higher-to-lower tungsten silicide transition (WSi{sub}2 → W{sub}5Si{sub}3) is, on the average, four times lower than that for the MoSi{sub}2)→Mo{sub}5Si{sub}3 transition. It is shown that an increase in the content of silicon in the surfaceside WSi{sub}2 layer stimulates the process of diffusion barrier compound production at interfaces, and this results in the increase in stability and heat resistance of silicide coatings on metals. In particular, the decay rate of MoSi{sub}2 → (Mo, W){sub}5Si{sub}3 in the MeSi{sub}2-W system at 1700℃ is lower than the corresponding rates for the MoSi{sub}2 → W{sub}5Si{sub}3 systems by factors of about 20 and 11, respectively. In this case, the silicide coatings on tungsten and molybdenum also exhibit their enhanced heat resistance. It is demonstrated that the SiO{sub}2 oxide film on tungsten silicide does not lose its protective properties at temperatures up to 2000℃.
机译:在空气加热下,对WSi {sub} 2-W体系中相扩散扩散的动力学进行了研究,研究范围为1500-2000℃。钨上硅化物涂层的稳定性和耐热性主要取决于硅向WSi {sub} 2界面的扩散以及最低硅化物W {sub} 5Si {sub} 3扩散势垒的形成,以及硅的产生。硅化物涂层外侧的保护性SiO {sub} 2氧化膜。一般而言,硅化钨的高低转变速率(WSi {sub} 2→W {sub} 5Si {sub} 3)平均比MoSi {sub}低四倍。 2)→Mo {sub} 5Si {sub} 3过渡。结果表明,表面WSi {sub} 2层中硅含量的增加会刺激界面处扩散阻挡化合物的生成过程,从而导致金属上硅化物涂层的稳定性和耐热性提高。特别是,在1700℃的MeSi {sub} 2-W系统中,MoSi {sub} 2→(Mo,W){sub} 5Si {sub} 3的衰减速率低于MoSi {sub } 2→W {sub} 5Si {sub} 3系统的系数分别约为20和11。在这种情况下,钨和钼上的硅化物涂层也显示出增强的耐热性。结果表明,硅化钨上的SiO {sub} 2氧化膜在高达2000℃的温度下不会失去其保护性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号