...
首页> 外文期刊>Computational Mechanics: Solids, Fluids, Fracture Transport Phenomena and Variational Methods >An inverse finite element method for determining residual and current stress fields in solids
【24h】

An inverse finite element method for determining residual and current stress fields in solids

机译:确定固体中残余应力和电流应力场的逆有限元方法

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The life expectancy of a solid component is traditionally predicted by assessing its expected stress cycle and comparing it to experimentally determined stress states at failure. The accuracy of this procedure is often compromised by unforeseen extremes in the loading cycle or material degradation. Residually stressed parts may either have longer or shorter lifespans than predicted. Thus, determination of the current state of stress (i.e., the residual stress in the absence of external loading) and material properties is particularly important. Typically, the material properties of a solid are determined by fitting experimental data obtained from the measured deformation response in the stress-free configuration. However, the characterization of the mechanical behavior of a residually stressed body requires, in principle, a method that is not restricted to specific constitutive models. Complementing a recently developed technique, known as the reversed updated Lagrangian finite element method (RULFEM), a new method called estimating the current state of stress (ECSS) is presented herein. ECSS is based on three-dimensional full-field displacement and force data of a body perturbed by small displacements and complements the first step of the incremental RULFEM method. The present method generates the current state of stress (or residual stress in the absence of external tractions) and the incremental elasticity tensor of each finite element used to discretize the deformable body. The validity of the ECSS method is demonstrated by two noise-free simulation cases.
机译:传统上,固体部件的预期寿命是通过评估其预期的应力周期并将其与实验确定的失效应力状态进行比较来预测的。该过程的准确性通常会因装载周期或材料降解中无法预料的极端情况而受到影响。残余应力零件的寿命可能比预期的更长或更短。因此,确定当前应力状态(即在没有外部载荷的情况下的残余应力)和材料性能特别重要。通常,通过拟合实验数据来确定固体的材料属性,该实验数据是从无应力配置下从测得的变形响应获得的。但是,原则上,表征残余应力物体的机械行为需要一种不限于特定本构模型的方法。作为对最近开发的技术(称为反向更新的拉格朗日有限元方法(RULFEM))的补充,本文介绍了一种称为估算当前应力状态(ECSS)的新方法。 ECSS基于三维全场位移和受小位移扰动的物体的力数据,并补充了增量RULFEM方法的第一步。本方法生成应力的当前状态(或在没有外部牵引力的情况下的残余应力)以及用于离散化可变形体的每个有限元的增量弹性张量。通过两个无噪声的仿真案例证明了ECSS方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号