...
【24h】

FSI modeling of the Orion spacecraft drogue parachutes

机译:猎户座航天器降落伞的FSI建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The space-time fluid-structure interaction (STFSI) methods for parachute modeling are now capable of bringing reliable analysis to spacecraft parachutes, which pose formidable computational challenges. A number of special FSI methods targeting spacecraft parachutes complement the STFSI core computational technology in addressing these challenges. Until recently, these challenges were addressed for the Orion spacecraft main parachutes, which are the parachutes used for landing, and in the incompressible-flow regime, which is where the main parachutes operate. At higher altitudes the Orion spacecraft will rely on drogue parachutes. These parachutes have a ribbon construction, and in FSI modeling this creates geometric and flow complexities comparable to those encountered in FSI modeling of the main parachutes, which have a ringsail construction. Like the main parachutes, the drogue parachutes will be used in multiple stages-two reefed stages and a fully-open stage. A reefed stage is where a cable along the parachute skirt constrains the diameter to be less than the diameter in the subsequent stage. After a period of time during the descent at the reefed stage, the cable is cut and the parachute disreefs (i.e. expands) to the next stage. The reefed stages and disreefing involve computational challenges beyond those in FSI modeling of fully-open drogue parachutes. We present the special modeling techniques we devised to address the computational challenges and the results from the computations carried out. The flight envelope of the Orion drogue parachutes includes regions where the Mach number is high enough to require a compressible-flow solver. We present a preliminary fluid mechanics computation for such a case.
机译:现在,用于降落伞建模的时空流固耦合方法(STFSI)能够为航天器降落伞带来可靠的分析,从而带来了巨大的计算挑战。针对航天器降落伞的许多特殊FSI方法是STFSI核心计算技术的补充,以应对这些挑战。直到最近,Orion航天器的主要降落伞(用于降落的降落伞)以及不可压缩流态(主要降落伞的运行地)都应对了这些挑战。在更高的高度,猎户座飞船将依靠锥降伞。这些降落伞具有带状结构,在FSI建模中,这会产生几何和流程复杂性,与具有环形帆结构的主降落伞在FSI建模中所遇到的相当。像主要降落伞一样,锥降降落伞将用于多个阶段-两个暗礁阶段和一个完全开放阶段。暗礁阶段是指沿着降落伞裙的电缆将直径限制为小于后续阶段的直径。在下礁阶段经过一段时间后,电缆被切断,降落伞的碎片(即膨胀)进入下一阶段。除全开式伞形降落伞的FSI建模外,礁石阶段和除藻还涉及计算难题。我们介绍了专门设计的特殊建模技术,以解决计算难题和计算结果。猎户座锥降落伞的飞行包线包括马赫数足够高以至于需要可压缩流动求解器的区域。我们为这种情况提供了初步的流体力学计算。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号