首页> 外文期刊>Combustion, Explosion, and Shock Waves >Universal Calibration of Quantitative OH-LIPF Measurements in Hydrocarbon Flames at Elevated Pressures
【24h】

Universal Calibration of Quantitative OH-LIPF Measurements in Hydrocarbon Flames at Elevated Pressures

机译:高压下烃火焰中OH-LIPF定量测量的通用校准

获取原文
获取原文并翻译 | 示例
           

摘要

Quantitative measurements of radical concentrations are important in studies of the structure of flames. In this research, a quantitative analysis was performed using laser-induced predissociative fluorescence of OH radicals (OH-LIPF) in high-pressure (1—5 atm) premixed methane—air and propane—air flat flames (φ= 0.7—1.3). OH was excited (A2Σ~+, v' = 3 - X2II, v" = 0, and P28) using a KrF excimer laser and (3,2) band fluorescence was observed. OH fluorescence intensities were calibrated against the OH concentrations calculated from flame simulation results in the postflame zone using the CHEMKIN premix flame code in conjunction with the GRI-Mech 3.0 reaction mechanism. The accuracy and spatial resolution of temperature measurements are important factors for the correctness of the corresponding flame simulations, especially in the reaction zone near the burner surface. In this work, a carefully constructed thermocouple (R-type, 50 μm) positioning system was used to identify the temperatures above the burner surface. With careful evaluations of quenching rates, Voigt profiles, and normalization against room-air N2 Raman scattering intensity, a universal calibration constant [C_t = (1.076 ± 0.174) ? 10~(16) molecules/cm3] was determined. The OH concentrations obtained by flame simulations showed good agreement with the quantitative OH-LIPF measurements in all methane—air flames and fuel lean (φ = 0.7—0.8) propane—air flames. However, a 2-fold to 5-fold discrepancy was obtained in propane flames at φ> 0.9. This may be caused by the lack of C3 reaction paths in the GRI mechanism and/or the inaccuracy of the ther mo chemical data for large molecules.
机译:自由基浓度的定量测量对于研究火焰的结构很重要。在这项研究中,使用高压(1-5 atm)甲烷-空气和丙烷-空气平面火焰(φ= 0.7-1.3)混合的激光诱导的OH自由基(OH-LIPF)的预分解荧光进行了定量分析。使用KrF准分子激光激发OH(A2Σ〜+,v'= 3-X2II,v“ = 0,和P28),并观察到(3,2)带荧光,并根据从中计算出的OH浓度校准OH荧光强度。使用CHEMKIN预混火焰代码和GRI-Mech 3.0反应机理在火焰后区域进行火焰模拟结果,温度测量的精度和空间分辨率是相应火焰模拟正确性的重要因素,尤其是在附近的反应区域在这项工作中,使用精心构造的热电偶(R型,50μm)定位系统来识别燃烧器表面上方的温度,并仔细评估淬火速率,Voigt曲线和针对室内空气N2的归一化测定拉曼散射强度,通用校准常数[C_t =(1.076±0.174)?10〜(16)分子/ cm3],火焰模拟得到的OH浓度显示出良好的一致性。在所有甲烷-空气火焰和稀薄燃料(φ= 0.7-0.8)丙烷-空气火焰中进行定量的OH-LIPF测量。然而,在φ> 0.9的丙烷火焰中获得了2至5倍的差异。这可能是由于GRI机理中缺少C3反应路径和/或大分子的热化学数据不准确所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号