...
首页> 外文期刊>Combustion theory and modelling >Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling
【24h】

Stratified turbulent Bunsen flames: flame surface analysis and flame surface density modelling

机译:分层湍流本生火焰:火焰表面分析和火焰表面密度建模

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this paper it is investigated whether the Flame Surface Density (FSD) model, developed for turbulent premixed combustion, is also applicable to stratified flames. Direct Numerical Simulations (DNS) of turbulent stratified Bunsen flames have been carried out, using the Flamelet Generated Manifold (FGM) reduction method for reaction kinetics. Before examining the suitability of the FSD model, flame surfaces are characterized in terms of thickness, curvature and stratification. All flames are in the Thin Reaction Zones regime, and the maximum equivalence ratio range covers 0.1≤φ≤1.3. For all flames, local flame thicknesses correspond very well to those observed in stretchless, steady premixed flamelets. Extracted curvature radii and mixing length scales are significantly larger than the flame thickness, implying that the stratified flames all burn in a premixed mode. The remaining challenge is accounting for the large variation in (subfilter) mass burning rate. In this contribution, the FSD model is proven to be applicable for Large Eddy Simulations (LES) of stratified flames for the equivalence ratio range 0.1≤φ≤1.3. Subfilter mass burning rate variations are taken into account by a subfilter Probability Density Function (PDF) for the mixture fraction, on which the mass burning rate directly depends. A priori analysis point out that for small stratifications (0.4≤φ≤1.0), the replacement of the subfilter PDF (obtained from DNS data) by the corresponding Dirac function is appropriate. Integration of the Dirac function with the mass burning rate m=m(φ), can then adequately model the filtered mass burning rate obtained from filtered DNS data. For a larger stratification (0.1≤φ≤1.3), and filter widths up to ten flame thicknesses, a β-function for the subfilter PDF yields substantially better predictions than a Dirac function. Finally, inclusion of a simple algebraic model for the FSD resulted only in small additional deviations from DNS data, thereby rendering this approach promising for application in LES.
机译:本文研究了为湍流预混燃烧开发的火焰表面密度(FSD)模型是否也适用于分层火焰。使用火焰产生歧管(FGM)还原方法进行反应动力学,已进行了湍流分层本生火焰的直接数值模拟(DNS)。在检查FSD模型的适用性之前,先根据厚度,曲率和分层对火焰表面进行表征。所有火焰均处于稀薄反应区范围,最大当量比范围为0.1≤φ≤1.3。对于所有火焰,局部火焰厚度与在无弹力,稳定的预混小火焰中观察到的厚度非常吻合。提取的曲率半径和混合长度比例显着大于火焰厚度,这意味着分层火焰均以预混合模式燃烧。剩下的挑战是要考虑(子过滤器)质量燃烧速率的巨大变化。在这一贡献中,FSD模型被证明适用于当量比范围为0.1≤φ≤1.3的分层火焰的大涡模拟(LES)。子过滤器的质量燃烧速率变化通过混合组分的子过滤器概率密度函数(PDF)加以考虑,质量燃烧速率直接取决于该概率。先验分析指出,对于小的分层(0.4≤φ≤1.0),用相应的Dirac函数替换子过滤器PDF(从DNS数据获得)是合适的。然后,将Dirac函数与质量燃烧速率m = m(φ)进行积分,可以对从过滤的DNS数据获得的过滤的质量燃烧速率进行充分建模。对于较大的分层(0.1≤φ≤1.3),并且过滤器宽度最多为十个火焰厚度,子过滤器PDF的β函数比Dirac函数产生的预测要好得多。最后,为FSD包含一个简单的代数模型只会导致与DNS数据的微小附加偏差,从而使该方法有望在LES中得到应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号