首页> 外文期刊>Combustion theory and modelling >Transient simulation of the combustion of fuel-lean hydrogen/air mixtures in platinum-coated channels
【24h】

Transient simulation of the combustion of fuel-lean hydrogen/air mixtures in platinum-coated channels

机译:铂涂层通道中贫燃料的氢气/空气混合物燃烧的瞬态模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The start-up of platinum-coated, hydrogen-fuelled planar channels with heights of 1mm is investigated numerically using 2-D transient simulations with detailed hetero-/homogeneous chemistry, heat conduction in the solid wall and surface radiation heat transfer. Simulations encompass pressures of 1 and 5bar and fuel-lean H-2/air equivalence ratios of 0.10 to 0.28. Catalytic ignition is inhibited by rising pressure and increasing hydrogen concentration. However, at temperatures above the catalytic ignition temperature T-ign, the dependencies of the heterogeneous reactivity reverse, showing a positive order similar to 1.5 with respect to hydrogen concentration and an overall positive pressure order of similar to 0.97. Despite the longer catalytic ignition times for the larger equivalence ratios, the times required to reach steady state are shorter at larger stoichiometries due to their enhanced catalytic reactivity at T>T-ign and the resulting higher exothermicity. Following catalytic ignition, the wall temperatures eventually attain superadiabatic values due to the diffusional imbalance of hydrogen. Homogeneous chemistry considerably moderates the superadiabatic surface temperatures at 5bar, as the gaseous combustion zone extends parallel to the channel wall and thus shields the catalyst surface from the hydrogen-rich channel core. Furthermore, gas-phase chemistry reduces the steady-state times and substantially increases the hydrogen conversion.
机译:使用二维瞬态模拟,通过详细的异质/均质化学性质,固体壁中的热传导和表面辐射传热,对高度为1mm的镀铂氢燃料平面通道的启动进行了数值研究。模拟包括1 bar和5 bar的压力以及稀油H-2 /空气当量比为0.10至0.28。升高的压力和增加的氢气浓度会抑制催化点火。然而,在高于催化点火温度T-ign的温度下,非均相反应性的依赖性相反,相对于氢浓度显示出类似于1.5的正序和类似于0.97的总体正压阶。尽管对于较大的当量比,较长的催化点火时间,但在较大的化学计量比下,达到稳态所需的时间较短,这是因为它们在T> T-ign时增强了催化反应性,并导致较高的放热度。催化点火后,由于氢的扩散不平衡,壁温最终达到超绝热值。由于气态燃烧区平行于通道壁延伸,因此均相化学作用极大地减轻了5bar的超级绝热表面温度,从而使催化剂表面免受富氢通道核心的影响。此外,气相化学反应减少了稳态时间并大大提高了氢气转化率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号