首页> 外文期刊>Computational Materials Science >Micro-macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials
【24h】

Micro-macro modelling of the effects of the grain size distribution on the plastic flow stress of heterogeneous materials

机译:粒度分布对非均质材料塑性流动应力影响的微观模型

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

When the mean grain size of polycrystalline materials is larger than similar to 100 nm, it is commonly accepted for metals, intermetallics or ceramics that the plastic flow stress scales linearly with the inverse square root of the mean grain size (the so-called Hall-Petch behaviour). However, in this classic formalism, only the mean grain size is considered in a semi phenomenological way, and, the fact that the grains form a population of stochastic nature with different sizes and shapes is not stated. Here, a new self-consistent model making use of the "translated fields" technique for elastic-viscoplastic materials is developed as micro-macro scale transition scheme, and, the aggregate is composed of spherical randomly distributed grains with a grain size distribution following a log-normal statistical function. The constitutive behaviour of each grain is described by a partitioned strain rate into an elastic part and a viscoplastic part. The viscoplastic strain rate is described by an isotropic power law including the grain diameter through the reference stress. Numerical results firstly display that the plastic flow stress of the material depends on both the mean grain size and the grain size dispersion of the distribution. Besides, the role of the dispersion is more important when the mean grain size is on the order of the mu m and the trend is a decrease of the flow stress with an increase of the dispersion. Secondly, predictions of second order internal stresses within the material indicate an increase in the internal stresses when grain size dispersion is increased, so that the plastic flow stress of the material depends on a competition between the respective distributions of internal stresses and individual flow stresses of the grains. (c) 2006 Elsevier B.V. All rights reserved.
机译:当多晶材料的平均晶粒尺寸大于约100 nm时,金属,金属间化合物或陶瓷通常会接受塑性流动应力与平均晶粒尺寸的平方根成反比的线性定标(即所谓的Hall-提取行为)。但是,在这种经典的形式主义中,仅以半现象学的方式考虑了平均晶粒尺寸,并且没有陈述晶粒形成具有不同尺寸和形状的随机自然种群的事实。在这里,开发了一种利用“翻译场”技术的弹性粘塑性材料的新的自洽模型,作为微观微观尺度过渡方案,并且聚集体由球形随机分布的晶粒组成,晶粒尺寸分布遵循对数正态统计函数。每个晶粒的本构行为通过将应变率划分为弹性部分和粘塑性部分来描述。粘塑性应变率由各向同性幂定律描述,包括通过参考应力的晶粒直径。数值结果首先表明,材料的塑性流动应力取决于平均粒径和分布的粒径分散。此外,当平均晶粒尺寸为μm量级并且趋势是随着分散体的增加而使流动应力减小时,分散体的作用更加重要。其次,对材料内部二阶内部应力的预测表明,当晶粒尺寸分散度增加时,内部应力会增加,因此材料的塑性流动应力取决于内部应力各自的分布与材料内部各个应力之间的竞争。谷物。 (c)2006 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号