...
首页> 外文期刊>Computational Materials Science >A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates
【24h】

A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates

机译:不同纳米刮擦速率下纳米晶铜塑性变形机理的分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

The plastic deformation mechanisms of nanoscratching process are investigated through the study of a rigid diamond tip sliding against nanocrystalline Cu using molecular dynamics (MD) simulation. Special attentions are paid to the scratching rate effects, as well as the crystal structural effects from single crystalline, polycrystalline and nanotwinned (NT) polycrystalline. With the increase of scratching rate, scratching force and workpiece temperature increase continuously due to severe plastic deformation and large chip volume, resulting in dislocation slip, GB slip, and twinning/detwinning. Scratching rate also governs the distributions of potential energy and kinetic energy of all the atoms, revealing the rate-dependent plastic deformation. Specifically, the plastic deformation for different scratching rates depends on the competition of scratching force, workpiece temperature and tool-workpiece contacting time that affect dislocation evolution. In addition, the results show that the plastic deformation due to scratching of single crystalline Cu is dominated by the dislocation-dislocation interactions. And the scratching induced plastic deformation of polycrystalline Cu is determined by the dislocation-grain boundary (GB) interactions. As for NT polycrystalline Cu under scratching, it is the dislocation-GB-twin boundary (TB) interactions accompanied with the twinning/detwinning process. While the presented MD simulations and the associated conclusions are based on nanocrystalline Cu, it is believed that the current deformation mechanism could also be applied to other face-centered-cubic nanocrystalline metals. (C) 2016 Elsevier B.V. All rights reserved.
机译:通过使用分子动力学(MD)模拟研究了刚性金刚石尖端相对于纳米晶Cu的滑动,研究了纳米划痕过程的塑性变形机制。特别要注意刮擦率效应,以及单晶,多晶和纳米孪晶(NT)多晶的晶体结构效应。随着刮擦率的增加,由于严重的塑性变形和较大的切屑体积,刮擦力和工件温度持续增加,从而导致错位滑移,GB滑移和孪晶/脱晶。刮擦速率还控制着所有原子的势能和动能的分布,揭示了速率依赖的塑性变形。具体来说,不同刮擦率的塑性变形取决于刮擦力,工件温度和工具-工件接触时间的竞争,这些竞争会影响位错的发展。此外,结果表明,由于位错-位错相互作用,由单晶铜的刮擦引起的塑性变形占主导。划痕引起的多晶铜塑性变形是由位错-晶界(GB)相互作用决定的。对于在刮擦下的NT多晶铜,是位错-GB-孪晶边界(TB)相互作用与孪生/解孪生过程相伴随的。虽然提出的MD模拟和相关结论基于纳米晶Cu,但可以相信,当前的变形机制也可以应用于其他以面心为中心的立方纳米晶金属。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号