首页> 外文期刊>Computational Materials Science >Multiscale modeling of tempering of AISI H13 hot-work tool steel - Part 2: Coupling predicted mechanical properties with FEM simulations
【24h】

Multiscale modeling of tempering of AISI H13 hot-work tool steel - Part 2: Coupling predicted mechanical properties with FEM simulations

机译:AISI H13热作工具钢回火的多尺度建模-第2部分:将预测的机械性能与FEM仿真耦合

获取原文
获取原文并翻译 | 示例
       

摘要

Simulation of austenitization and quenching of steel using the Finite Element Method (FEM) is nowadays a common tool to predict residual stresses and deformations during these processes. However the simulation of tempering, which determines the final residual stresses and distortions has been often neglected or performed in a purely phenomenological and highly simplified way. The objective of this study is to precisely predict the relaxation of internal stresses during tempering, taking explicitly into account the evolution of the microstructure. Mechanical properties which determine the relaxation of stress; namely the drop of the yield stress and the creep mechanism are the key factors for the success of the simulation. These mechanical parameters can be determined experimentally for a specific tempering temperature. However tempering temperature for most steels varies for each industrial application in order to adjust the desired hardness-toughness relation. Consequently, experimentally measurement of decisive mechanical properties which determine the amount of stress relaxation for each tempering temperature is very costly. Therefore, these material parameters were simulated from physically based material models with coupled microstructural simulations in the first part of this two-part investigation. In this part of the study, the simulated mechanical properties will be coupled with the FEM simulations using "Abaqus (R)", in order to simulate the stress relaxation during the tempering process of a thick-walled workpiece made of hot-work tool steel AISI H13 (DIN 1.2344, X40CrMoV5-1). Utilizing this methodology, different tempering conditions (soaking time, tempering temperature) can be considered in the model to predict the stress relaxation in macroscopic scale. (C) 2015 Elsevier B.V. All rights reserved.
机译:如今,使用有限元方法(FEM)模拟钢的奥氏体化和淬火是预测这些过程中残余应力和变形的常用工具。但是,通常以纯粹的现象学和高度简化的方式来忽略或执行确定最终残余应力和变形的回火模拟。这项研究的目的是准确地预测回火过程中内部应力的松弛,同时明确考虑到微观组织的演变。决定应力松弛的机械性能;即屈服应力的下降和蠕变机理是模拟成功的关键因素。这些机械参数可以针对特定的回火温度通过实验确定。但是,大多数钢的回火温度因每种工业应用而异,以便调节所需的硬度-韧性关系。因此,决定性的机械性能的实验测量决定了每个回火温度的应力松弛量是非常昂贵的。因此,在此两部分研究的第一部分中,通过基于物理的材料模型以及耦合的微结构模拟对这些材料参数进行了模拟。在这一部分的研究中,模拟的机械性能将与使用“ Abaqus(R)”的有限元模拟相结合,以模拟由热作工具钢制成的厚壁工件回火过程中的应力松弛AISI H13(DIN 1.2344,X40CrMoV5-1)。利用这种方法,可以在模型中考虑不同的回火条件(均热时间,回火温度),以宏观方式预测应力松弛。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号