首页> 外文期刊>Computational Materials Science >Mechanism of plastic damage and fracture of a particulate tungsten-reinforced copper composite: A microstructure-based finite element study
【24h】

Mechanism of plastic damage and fracture of a particulate tungsten-reinforced copper composite: A microstructure-based finite element study

机译:颗粒状钨增强铜复合材料塑性损伤和断裂的机理:基于微观结构的有限元研究

获取原文
获取原文并翻译 | 示例
           

摘要

Tungsten particle-reinforced copper composites offer a unique combination of conductivity and strength for high-temperature heat sink applications. Particulate tungsten reinforcement leads to a strong enhancement of strength below 300°C while the ductility is significantly decreased on the other hand. Above 500°C, the reinforcing effect disappears completely and the ductility is further reduced. The composite exhibits a considerable scattering in the tensile elongation. The aim of this computational study is to understand the deformation and fracture behavior of the composite on the basis of its microstructure. To this end, we employed a microstructure-based finite element analysis using a dedicated micrograph mapping tool OOF. The material parameters required for damage modeling were calibrated by fitting the simulated tensile curve into the measured one. A simulation of tensile loading case at 300°C revealed the characteristic development of plastic strain localization forming a narrow deformation band. Such a localized plastic yield pattern occurs as a result of von-Mises stress concentration in this band. Hydrostatic tensile stress is also concentrated in the same band leading to initiation and accumulation of ductile damage and finally to cracking. The scattering in the final rupture strain is shown to be a consequence of the random microstructure. The local configuration of the phase morphology turns out to play an important role in triggering the strain localization. The pronounced impact of test temperature on yield stress and rupture strain is attributed to the presence of thermal stress produced by thermal expansion mismatch upon heating.
机译:钨颗粒增强铜复合材料为高温散热器应用提供了导电性和强度的独特组合。另一方面,颗粒状钨增强材料可在300°C以下强烈增强强度,而延展性则显着下降。高于500°C,增强作用完全消失,延展性进一步降低。该复合材料在拉伸伸长率上显示出相当大的散射。这项计算研究的目的是基于复合材料的微观结构来了解其变形和断裂行为。为此,我们使用专用的显微照片映射工具OOF采用了基于微结构的有限元分析。损伤建模所需的材料参数是通过将模拟拉伸曲线拟合到所测得的材料中来进行校准的。在300°C的拉伸载荷情况下的模拟显示塑性应变局部化的特征发展,形成了狭窄的变形带。这种局部塑性屈服模式是由于该带中的von-Mises应力集中而产生的。静水张应力也集中在同一条带中,导致延展性破坏的发生和积累,最终导致破裂。最终断裂应变中的散射被证明是随机微观结构的结果。结果证明,相形态的局部构型在触发应变局部化中起着重要作用。测试温度对屈服应力和断裂应变的显着影响归因于加热时由于热膨胀失配而产生的热应力的存在。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号