...
首页> 外文期刊>Computational Materials Science >Dopants and dopant-vacancy complexes in tetragonal lead titanate: A systematic first principles study
【24h】

Dopants and dopant-vacancy complexes in tetragonal lead titanate: A systematic first principles study

机译:四方钛酸铅中的掺杂剂和掺杂剂-空位配合物:系统的第一性原理研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

A systematic investigation of dopants in tetragonal lead titanate is presented by screening elements from the third period including K, Ca and all 3d transition metals. Formation energies and equilibrium transition states are determined by means of density functional theory calculations for both cation sites in the perovskite lattice, which allows us to discriminate between donor and acceptor type behavior. The stability of defect dipoles is determined by calculating the binding energy of transition metal-vacancy complexes. The results reveal that the tendency to substitute the Pb-site rather than the Ti-site monotonically increases going from Ti to Zn. The transition from Ti to Pb substitution depends both on the chemical equilibrium conditions and the position of the Fermi energy. This is most evident for Sc and Zn dopants that in principle can occupy both Pb-and Ti-sites depending on preparation conditions. Except for V all acceptor dopants form defect complexes with oxygen vacancies and thus can form defect dipoles causing hardening as well as aging effects. Defect dipoles involving Pb substitution and oxygen vacancies are found to be unfavorable for all dopants considered here. (C) 2015 Elsevier B.V. All rights reserved.
机译:通过筛选包括钾,钙和所有3d过渡金属在内的第三阶段的元素,对四方钛酸铅中的掺杂剂进行了系统的研究。钙钛矿晶格中两个阳离子部位的密度泛函理论计算确定了形成能和平衡过渡态,这使我们能够区分施主和受主的行为。通过计算过渡金属-空位配合物的结合能来确定缺陷偶极子的稳定性。结果表明,从Ti到Zn,单单取代Pb位而不是Ti位的趋势有所增加。从Ti到Pb取代的过渡取决于化学平衡条件和费米能量的位置。对于Sc和Zn掺杂剂,这最明显,根据制备条件,原则上可以同时占据Pb和Ti位置。除V以外,所有受体掺杂剂都会形成具有氧空位的缺陷配合物,因此会形成缺陷偶极子,从而导致硬化和老化效应。发现涉及Pb取代和氧空位的缺陷偶极子对此处考虑的所有掺杂剂均不利。 (C)2015 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号