首页> 外文期刊>Computational Materials Science >The outlook for platonic and cubic gauche nitrogens
【24h】

The outlook for platonic and cubic gauche nitrogens

机译:柏洛克和立方薄纱氮的前景

获取原文
获取原文并翻译 | 示例
           

摘要

While polynitrogens are proposed to be the hyper rocket fuels, many of their properties in the solid states are unclear. Herein, we comprehensively investigated the thermodynamic and kinetic stabilities, polymorphs, and rocket performances of platonic and cubic gauche nitrogens, i.e. tetrahedral N-4, cubic N-8, platonic dodecahedral N-20 and cubic gauche nitrogen (cg-N), using the first-principles calculations. The results showed that the dissociation barrier of tetrahedral N-4 in the gas phase (>200 kJ mol(-1)) is high enough to keep stable. It would be a liquid monopropellant under slight external pressure or low temperature. The specific impulse (I-sp) of tetrahedral N-4 is comparable to that of liquid H-2/O-2, but it provides a density of 1.459 g cm(-3) with the body centered tetragonal packing. The conversion barrier of cubic N-8 in the gas phase (similar to 85 kJ mol(-1)) is marginal for stability. It may be a solid at ambient temperature, and its I-sp exceeds that of liquid H-2/O-2. The crystal density of cubic N-8 is 1.964 g cm(-3) with the rhombohedral centered hexagonal packing. The dissociation barrier for stability of platonic N-20 in the gas phase (similar to 25 kJ mol(-1)) is insufficient, however it possesses a lattice energy above 100 kJ mol(-1). Although the I-sp of platonic N-20 is as powerful as that of the liquid H-2/O-2, it has a crystal density of 2.132 g cm(-3) with the face centered cubic packing. For surface relaxation, cg-N is unstable at the ambient condition with a dissociation barrier of similar to 17 kJ mol(-1). While the I-sp of cg-N is less than those of platonic nitrogens, its effective impulse (I-ef) is the best due to an extremely high density of 3.401 g cm(-3). In respect of the thermodynamics, the enthalpies per atom of platonic nitrogens are always higher than those of cg-N and epsilon-N-2 from 0 to 100 GPa. (C) 2016 Elsevier B.V. All rights reserved.
机译:尽管提议将多氮用作超级火箭燃料,但它们在固态中的许多特性尚不清楚。在本文中,我们使用以下方法全面研究了柏拉图式和立方薄纱氮的热力学和动力学稳定性,多晶型物和火箭性能,即使用四面体N-4,立方N-8,十二面体N-20和立方薄纱氮(cg-N)。第一性原理计算。结果表明,气相中四面体N-4的解离势垒(> 200 kJ mol(-1))高得足以保持稳定。在轻微的外部压力或低温下它将是液体单推进剂。四面体N-4的比冲(I-sp)与液体H-2 / O-2的比冲可比,但是它的密度为1.459 g cm(-3),以身体为中心的四边形堆积。气相中立方N-8的转换势垒(类似于85 kJ mol(-1))对于稳定性而言是微不足道的。它在环境温度下可能是固体,其I-sp超过液体H-2 / O-2。立方N-8的晶体密度为1.964 g cm(-3),具有菱面体中心的六边形堆积。气相中的柏拉图N-20稳定性的解离势垒不足(类似于25 kJ mol(-1)),但是它具有高于100 kJ mol(-1)的晶格能。尽管柏拉图N-20的I-sp与液体H-2 / O-2的I-sp一样强大,但其晶体密度为2.132 g cm(-3),面心为立方堆积。对于表面弛豫,cg-N在环境条件下不稳定,具有约17 kJ mol(-1)的解离势垒。虽然cg-N的I-sp小于铂族氮的I-sp,但由于3.401 g cm(-3)的极高密度,其有效冲量(I-ef)最佳。在热力学方面,从0到100 GPa,柏拉图氮的每个原子的焓总是高于cg-N和ε-N-2。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号