首页> 外文期刊>中船季刊 >Application of Intelligent Hybrid Taguchi-Genetic Algorithm for Multi-Criteria Optimization of Vessel Shafting Alignment
【24h】

Application of Intelligent Hybrid Taguchi-Genetic Algorithm for Multi-Criteria Optimization of Vessel Shafting Alignment

机译:智能混合Taguchi遗传算法在船舶轴系对中多准则优化中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In this Paper, an intelligent hybrid Taguchi-genetic algorithm (IHTGA) approach is proposed to search optimal bearing offsets of shafting alignment for the vessel propulsion system. Its objectives are to minimize the shaft normal stress and shear force. Its constraints include permissible reaction forces and stresses of bearings, and shear forces and bending moments of the shaft thrust flange at operation conditions, which mainly contain cold and hot conditions. As well know, the correct alignment of the shafting system for main propulsion system is important to ensure the safe operation of a vessel. In order to obtain a set of acceptable forces and stresses for bearings and shaft at operation conditions, a set of optimal bearing offsets to be determined. However, instead of usually carried out on a time-consuming trial-and-error procedure in most of shipyard, the IHTGA approach is applied to search for the above bearing offsets. The IHTGA is to combine traditional genetic algorithms (TRGAs) with Taguchi method. Taguchi method is inserted between crossover and mutation operations of TRGAs. Then, the systematic reasoning ability of Taguchi method is incorporated in the crossover operations to intelligently select the better genes to achieve crossover, and consequently enhance the genetic algorithms. Therefore, the IHTGA can be more robust, statistically sound, and quickly convergent. Its fitness function is assigned as a pseudo objective function, which is a linear combination of design objectives and constraints by penalty function method. At the same time, the bearing reaction forces and stresses, and the shaft normal stresses, bending moments and shear forces become determined by using finite element method. The computational experiments show that the proposed IHTGA approach can significant reduce alignment time and improve performance as compared with trial-and-error result for 2200 TEU container vessel.
机译:本文提出了一种智能混合田口遗传算法(IHTGA)方法来搜索船舶推进系统的最佳轴系对准轴承偏移量。其目的是使轴法向应力和剪力最小化。它的限制条件包括轴承的允许反作用力和应力,以及在主要包含冷,热条件的工作条件下的轴向推力凸缘的剪切力和弯矩。众所周知,主推进系统的轴系的正确对准对于确保船舶的安全运行很重要。为了获得在运行条件下轴承和轴的一组可接受的力和应力,需要确定一组最佳轴承偏移。但是,不是通常在大多数造船厂中进行耗时的反复试验,而是采用IHTGA方法来搜索上述方位偏移。 IHTGA将传统遗传算法(TRGA)与田口方法相结合。 Taguchi方法插入在TRGA的交叉和突变操作之间。然后,将田口方法的系统推理能力结合到交叉操作中,以智能地选择更好的基因来实现交叉,从而增强遗传算法。因此,IHTGA可以更加健壮,统计合理并且可以快速收敛。它的适应度函数被指定为伪目标函数,它是通过罚函数法将设计目标和约束条件线性组合的。同时,采用有限元方法确定了轴承的反作用力和应力,以及轴的法向应力,弯矩和剪切力。计算实验表明,与2200 TEU集装箱船的反复试验结果相比,提出的IHTGA方法可以显着减少对准时间并提高性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号