...
首页> 外文期刊>Comptes rendus. Mecanique >Constitutive relations for the isotropic deformation of frictionless packings of polydisperse spheres [Lois de comportement pour déformations isotrope d'assemblage de sphères polydisperses sans frottement]
【24h】

Constitutive relations for the isotropic deformation of frictionless packings of polydisperse spheres [Lois de comportement pour déformations isotrope d'assemblage de sphères polydisperses sans frottement]

机译:多分散球无摩擦填料的各向同性变形的本构关系[无摩擦的多分散球组装的各向同性变形的本构关系]

获取原文
获取原文并翻译 | 示例
           

摘要

The isotropic compression of polydisperse packings of frictionless spheres is modeled with the Discrete Element Method (DEM). The evolution of coordination number, fraction of rattlers, isotropic fabric, and pressure (isotropic stress) is reported as function of volume fraction for different system parameters. The power law relationship, with power ≈1/2, between coordination number and volume fraction is confirmed in the jammed state for a broad range of volume fractions and for different (moderate) polydispersities. The polydispersity in the packing causes a shift of the critical volume fraction, i.e., more heterogeneous packings jam at higher volume fractions. Close to jamming, the coordination number and the jamming volume fraction itself depend on both history and rate. At larger densities, neither the deformation history nor the loading rate have a significant effect on the evolution of the coordination number.Concerning the fabric tensor, comparing our DEM results to theoretical predictions, good agreement for different polydispersities is observed. An analytical expression for the pressure as function of isotropic (volumetric) strain is proposed for polydisperse packings, based on the assumption of uniform deformation. We note that, besides the implicit proportionality to contact number density (or fabric), no single power-law is evidenced in the relation between pressure and isotropic strain. However, starting from zero pressure at the jamming point, a linear term with a quadratic correction describes the stress evolution rather well for a broad range of densities and for various polydispersities. Finally, an incremental evolution equation is proposed for both fabric and stress, as function of isotropic strain, and involving the coordination number and the fraction of rattlers, as starting point for further studies involving anisotropic deformations.
机译:用离散元方法(DEM)对无摩擦球的多分散填料的各向同性压缩进行建模。据报道,对于不同的系统参数,配位数,响尾蛇分数,各向同性织物和压力(各向同性应力)的演变是体积分数的函数。对于大范围的体积分数和不同(中等)的多分散度,在阻塞状态下,配位数与体积分数之间的幂定律关系为幂≈1/ 2。填料中的多分散性导致临界体积分数的变化,即,更多种的填料在较高的体积分数下堵塞。接近卡纸时,配位数和卡纸量分数本身取决于历史记录和比率。在较大的密度下,变形历史和加载速率均不影响配位数的变化。关于织物张量,将我们的DEM结果与理论预测值进行比较,可以观察到不同多分散性的良好一致性。基于均匀变形的假设,针对多分散填料提出了压力作为各向同性(体积)应变函数的解析表达式。我们注意到,除了隐含的与接触数密度(或织物)成正比之外,在压力与各向同性应变之间的关系中没有单一的幂律被证明。但是,从堵塞点的零压力开始,具有二次校正的线性项很好地描述了应力变化对各种密度和各种多分散性的影响。最后,针对各向同性应变,提出了织物和应力的增量演化方程,其中包括协调数和响尾声分数,作为进一步研究各向异性变形的起点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号