...
首页> 外文期刊>Computer Modeling in Engineering & Sciences >Numerical Solution of 2D Natural Convection in a Concentric Annulus with Solid-Liquid Phase Change
【24h】

Numerical Solution of 2D Natural Convection in a Concentric Annulus with Solid-Liquid Phase Change

机译:固液相变同心圆环中二维自然对流的数值解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Heat transfer processes involving phase change either, solidification or melting, appear frequently in nature and in industrial applications. In this paper the convective patterns that arise from a 2D shear driven annular flow (without and with melting), are presented. The convective annular flow with radial gravity can be considered as a simplified model of the atmospheric flow in the terrestrial equatorial plane (bounded by the warm surface of the Earth and the cold tropopause). The governing equations have been numerically solved by the Spectral Element Method. The numerical results reported in this paper, for the cases without melting (at two different radius ratio η=r_i/r_0) are in qualitative agreement with analytical results and experimental data obtained elsewhere for 2D annular electroconvection systems. For the cases with melting, the material between the two concentric circles (with radius ratio η =0.35) is initially solid. The melting process takes place from the internal circle with temperature T_h, where T_h is greater than the melting temperature T_m. The heat transfer rate at the internal circle and the convective flow patterns have been obtained for the cases without shear and with shear. The Couette shear is induced by a constant rotation of the internal circle. As the phase change process takes place, three parameters of the system depend on the fluid layer depth: the Rayleigh number, the Reynolds number and the radius ratio of the annular fluid layer. We found that as the fluid layer depth increases, different flow patterns appear. We discuss the critical azimuthal mode number and its relationship with the Nusselt number.
机译:在自然界和工业应用中,涉及固相或熔融相变的传热过程经常出现。在本文中,提出了由二维剪切驱动的环形流动(无熔融)引起的对流模式。具有径向重力的对流环形流可以看作是陆地赤道平面(由地球的温暖表面和寒冷的对流层顶所界定)的大气流的简化模型。控制方程已通过频谱元素法进行了数值求解。本文报道的数值结果,对于没有熔化的情况(两个不同的半径比η= r_i / r_0),与二维环形电对流系统的分析结果和实验数据在质量上是一致的。对于熔化的情况,两个同心圆(半径比η= 0.35)之间的材料最初是固态的。熔化过程从温度为T_h的内圆开始,其中T_h大于熔化温度T_m。对于没有剪切和有剪切的情况,已经获得了内圆处的传热速率和对流流动模式。 Couette剪切是由内部圆的恒定旋转引起的。随着相变过程的进行,系统的三个参数取决于流体层深度:瑞利数,雷诺数和环形流体层的半径比。我们发现,随着流体层深度的增加,会出现不同的流动模式。我们讨论了临界方位角模数及其与Nusselt数的关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号