首页> 外文期刊>Computational & theoretical chemistry >Extended random phase approximation method for atomic excitation energies from correlated and variationally optimized second-order density matrices
【24h】

Extended random phase approximation method for atomic excitation energies from correlated and variationally optimized second-order density matrices

机译:相关和经变优化的二阶密度矩阵的原子激发能的扩展随机相位近似方法

获取原文
获取原文并翻译 | 示例
           

摘要

Density matrix methods are typically ground state methods. They cannot describe excited states with the same symmetry as the ground state because they rely on energy minimization. The Random Phase Approximation (RPA) is a simple method to derive excitation energies from idempotent first-order density matrices, but the quality of the resulting excitation energies is poor. The quality of the excitation spectrum may be improved by extending the RPA to correlated states. Such an 'extended RPA' (ERPA) method depends only on the second-order density matrix (2DM). This work studies the main differences between the ERPA and the RPA-the influence of electron correlation, variational optimality, the ensemble nature of the density matrix and N-representability errors in the input 2DM-by applying the ERPA to exact 2DM's and variationally optimized 2DM's. Our findings are relevant for all methods similar to ERPA that determine excitation spectra from low-order density matrices. The inclusion of correlation makes it possible to describe the low-energy excitation spectra of the atoms He-Ne adequately, and the ERPA is thus a good starting point for further refinements, as higher-order excitations should be included to obtain chemical accuracy for many-electron systems. However, the ERPA fails for ensemble density matrices and requires a positive-definite double commutator matrix Ψ0ak?al,H,aj?aiΨ0 to guarantee that the excitation spectrum is real.
机译:密度矩阵方法通常是基态方法。它们无法描述与基态具有相同对称性的激发态,因为它们依赖于能量最小化。随机相位逼近(RPA)是一种从幂等一阶密度矩阵中得出激发能的简单方法,但是所得激发能的质量很差。可以通过将RPA扩展到相关状态来提高激发光谱的质量。这种“扩展RPA”(ERPA)方法仅取决于二阶密度矩阵(2DM)。这项工作研究了ERPA和RPA之间的主要差异-电子相关性,变化最优性,密度矩阵的集合性质和输入2DM中N表示性误差的影响-通过将ERPA应用于精确的2DM和经变优化的2DM 。我们的发现与所有类似于ERPA的方法有关,这些方法从低阶密度矩阵确定激发光谱。包含相关性使得可以充分描述He-Ne原子的低能激发光谱,因此ERPA是进一步细化的良好起点,因为应包括更高阶激发以获得许多化学精度电子系统。但是,ERPA对于集合密度矩阵失败,并且需要一个正定双换向器矩阵Ψ0akakal,H,ajΨaiΨ0来保证激发谱是真实的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号