首页> 外文期刊>Biomacromolecules >Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels
【24h】

Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels

机译:固定在生物杂交纳米凝胶中的纤维素酶的可调酶活性和增强的稳定性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper reports a facile approach for encapsulation of enzymes in nanogels. Our approach is based on the use of reactive copolymers able to get conjugated with enzyme and build 3D colloidal networks or biohybrid nanogels. In a systematic study, we address the following question: how the chemical structure of nanogel network influences the biocatalytic activity of entrapped enzyme? The developed method allows precise control of the enzyme activity and improvement of enzyme resistance against harsh store conditions, chaotropic agents, and organic solvents. The nanogels were constructed via direct chemical cross-linking of water-soluble reactive copolymers poly(N-vinylpyrrolidone-co-N-methacryloxysuccinimide) with proteins such as enhanced green fluorescent protein (EGFP) and cellulase in water-in-oil emulsion. The water-soluble reactive copolymers with controlled amount of reactive succinimide groups and narrow dispersity were synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization. Poly(ethylene glycol) bis(3-aminopropyl) and branched polyethylenimine were utilized as model cross-linkers to optimize synthesis of nanogels with different architectures in the preliminary experiments. Biofluorescent nanogels with different loading amount of EGFP and varying cross-linking densities were obtained. We demonstrate that the biocatalytic activity of cellulase-conjugated nanogels (CNG) can be elegantly-tuned by control of their cross-linking degrees. Circular dichroism (CD) spectra demonstrated that the secondary structures of the immobilized cellulase were changed in the aspect of a-helix contents. The secondary structures of cellulase in highly cross-linked nanogels were strongly altered compared with loosely cross-linked nanogels. The fluorescence resonance energy transfer (FRET) based study further revealed that nanogels with lower cross-linking degree enable higher substrate transport rate, providing easier access to the active site of the enzyme. The biohybrid nanogels demonstrated significantly improved stability in preserving enzymatic activity compared with free cellulase. The functional biohybrid nanogels with tunable enzymatic activity and improved stability are promising candidates for applications in biocatalysis, biomass conversion, or energy utilization fields.
机译:本文报道了一种在纳米凝胶中封装酶的简便方法。我们的方法基于使用能够与酶偶联并形成3D胶体网络或生物杂交纳米凝胶的反应性共聚物。在系统的研究中,我们解决了以下问题:纳米凝胶网络的化学结构如何影响所包埋的酶的生物催化活性?所开发的方法可以精确控制酶的活性,并改善对苛刻储存条件,离液剂和有机溶剂的酶抗性。纳米凝胶是通过水溶性(N-乙烯基吡咯烷酮-co-N-甲基丙烯酰氧基琥珀酰亚胺)水溶性反应性共聚物与油包水乳液中的蛋白质(例如增强型绿色荧光蛋白(EGFP)和纤维素酶)直接化学交联而构建的。通过可逆的加成断裂链转移(RAFT)聚合反应合成了具有受控数量的反应性琥珀酰亚胺基团和窄分散性的水溶性反应性共聚物。在初步实验中,将聚乙二醇双(3-氨基丙基)和支链聚乙烯亚胺用作模型交联剂,以优化具有不同结构的纳米凝胶的合成。获得了具有不同EGFP负载量和不同交联密度的生物荧光纳米凝胶。我们证明,纤维素酶偶联的纳米凝胶(CNG)的生物催化活性可以通过控制其交联度来进行精细调节。圆二色性(CD)光谱表明,固定化纤维素酶的二级结构在α-螺旋含量方面发生了变化。与松散交联的纳米凝胶相比,高度交联的纳米凝胶中纤维素酶的二级结构发生了很大变化。基于荧光共振能量转移(FRET)的研究进一步表明,具有较低交联度的纳米凝胶可实现较高的底物传输速率,从而更易于接近酶的活性位点。与游离纤维素酶相比,该生物杂化纳米凝胶在保留酶活性方面显示出显着改善的稳定性。具有可调节的酶活性和改善的稳定性的功能性生物杂化纳米凝胶是在生物催化,生物质转化或能量利用领域中应用的有希望的候选者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号