首页> 外文期刊>Biophysical Journal >Evidence that alphaC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.
【24h】

Evidence that alphaC region is origin of low modulus, high extensibility, and strain stiffening in fibrin fibers.

机译:αC区域是纤维蛋白纤维中低模量,高延伸性和应变变硬的起源的证据。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Fibrin fibers form the structural scaffold of blood clots and perform the mechanical task of stemming blood flow. Several decades of investigation of fibrin fiber networks using macroscopic techniques have revealed remarkable mechanical properties. More recently, the microscopic origins of fibrin's mechanics have been probed through direct measurements on single fibrin fibers and individual fibrinogen molecules. Using a nanomanipulation system, we investigated the mechanical properties of individual fibrin fibers. The fibers were stretched with the atomic force microscope, and stress-versus-strain data was collected for fibers formed with and without ligation by the activated transglutaminase factor XIII (FXIIIa). We observed that ligation with FXIIIa nearly doubled the stiffness of the fibers. The stress-versus-strain behavior indicates that fibrin fibers exhibit properties similar to other elastomeric biopolymers. We propose a mechanical model that fits our observed force extension data, is consistent with the results of the ligation data, and suggests that the large observed extensibility in fibrin fibers is mediated by the natively unfolded regions of the molecule. Although some models attribute fibrin's force-versus-extension behavior to unfolding of structured regions within the monomer, our analysis argues that these models are inconsistent with the measured extensibility and elastic modulus.
机译:纤维蛋白纤维形成血凝块的结构支架,并执行阻止血液流动的机械任务。使用宏观技术对纤维蛋白纤维网络进行的数十年研究显示出了卓越的机械性能。最近,通过直接测量单纤维蛋白纤维和单个纤维蛋白原分子,探究了纤维蛋白力学的微观起源。使用纳米操纵系统,我们研究了单个纤维蛋白纤维的机械性能。用原子力显微镜拉伸纤维,并收集通过活化的转谷氨酰胺酶因子XIII(FXIIIa)连接和不连接形成的纤维的应力-应变数据。我们观察到与FXIIIa的连接几乎使纤维的刚度加倍。应力-应变行为表明纤维蛋白纤维表现出与其他弹性生物聚合物相似的性能。我们提出了一个适合我们观察到的力扩展数据的机械模型,该模型与连接数据的结果一致,并表明在纤维蛋白纤维中观察到的较大可扩展性是由分子的天然展开区域介导的。尽管某些模型将纤维蛋白的力-延伸行为归因于单体内结构化区域的展开,但我们的分析认为,这些模型与测得的可扩展性和弹性模量不一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号