...
首页> 外文期刊>Biophysical Journal >Visualization of excitonic structure in the Fenna-Matthews-Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy.
【24h】

Visualization of excitonic structure in the Fenna-Matthews-Olson photosynthetic complex by polarization-dependent two-dimensional electronic spectroscopy.

机译:Fenna-Matthews-Olson光合复合物中的激子结构通过偏振相关的二维电子光谱学可视化。

获取原文
获取原文并翻译 | 示例

摘要

Photosynthetic light-harvesting proceeds by the collection and highly efficient transfer of energy through a network of pigment-protein complexes. Interchromophore electronic couplings and interactions between pigments and the surrounding protein determine energy levels of excitonic states, and dictate the mechanism of energy flow. The excitonic structure (orientation of excitonic transition dipoles) of pigment-protein complexes is generally deduced indirectly from x-ray crystallography, in combination with predictions of transition energies and couplings in the chromophore site basis. We demonstrate that coarse-grained, excitonic, structural information in the form of projection angles between transition dipole moments can be obtained from the polarization-dependent, two-dimensional electronic spectroscopy of an isotropic sample, particularly when the nonrephasing or free polarization decay signal, rather than the photon echo signal, is considered. This method provides an experimental link between atomic and electronic structure, and accesses dynamical information with femtosecond time resolution. In an investigation of the Fenna-Matthews-Olson complex from green sulfur bacteria, the energy transfer connecting two particular exciton states in the protein was isolated as the primary contributor to a crosspeak in the nonrephasing two-dimensional spectrum at 400 femtoseconds under a specific sequence of polarized excitation pulses. The results suggest the possibility of designing experiments using combinations of tailored polarization sequences to separate and monitor individual relaxation pathways.
机译:光合作用的光捕获是通过色素-蛋白质复合物网络的收集和高效的能量转移而进行的。发色团间的电子耦合以及色素与周围蛋白质之间的相互作用决定了激子态的能级,并决定了能流的机理。色素-蛋白质复合物的激子结构(激子跃迁偶极子的取向)通常是根据X射线晶体学间接地推论得出的,结合了在生色团位点上的跃迁能量和偶合的预测。我们证明,可以从各向同性样品的偏振相关二维电子光谱学中获得过渡偶极矩之间的投影角形式的粗粒,激子结构信息,尤其是在无相或自由偏振衰减信号时,而不是光子回波信号。该方法提供了原子和电子结构之间的实验链接,并以飞秒时间分辨率访问动态信息。在对来自绿色硫细菌的Fenna-Matthews-Olson复合物的研究中,分离了蛋白质中连接两个特定激子态的能量转移,作为在400毫微秒下在特定序列下非复相二维光谱中交叉峰的主要贡献者。极化激励脉冲。结果表明设计实验的可能性,即使用量身定制的极化序列的组合来分离和监测单个松弛路径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号