首页> 外文期刊>電子情報通信学会技術研究報告. 電子部品·材料. Component Parts and Materials >Super parallel near-field optical head with possibility of ultrahigh data rate - ultrahigh density optical disk system using VCSEL array
【24h】

Super parallel near-field optical head with possibility of ultrahigh data rate - ultrahigh density optical disk system using VCSEL array

机译:具有超高数据速率可能性的超并行近场光学头-使用VCSEL阵列的超高密度光盘系统

获取原文
获取原文并翻译 | 示例
           

摘要

In order to meet the requirement for an ultrahigh data transfer rate in future optical communication systems, the parallel optical memory system has been developed using a VCSFL array and three-dimensional microoptical here (VCSFL array and Microlens array of which focal points self-aliened on the top tip of the Nano-Probe array) and self-adjustment. The concept, theoretical analysis and fabrication process for the array head are discussed with emphasis on the microoptical issues such as the improvement of optical efficiency with by microlens focusing. The flat-tip microprobe structure was successfully prepared with the small metal aperture of 150 nm and 1.25% optical throughput using metal-aperture Si or GaP semiconductor microprobes. From the FDTD simulation, the optical throughput can be improved using a buried-type microprobe with an asymmetric metal-coated structure since this is a better structure for the coupling efficiency between the propagating wave and surface plasmon. Since the focused beam is helpful for the better optical throughput in the integrated VCSFL microprobe array, the microlens array is developed on the other side of microprobe array using the thermal reflow of photoresist and the pattern transfer process to the semiconductor substrate. The alignment of optical axis between the optical components is critical to get the required optical efficiency in this system. Thus, three-dimensional microoptical adjustment is being studied to focus very small spot on the recording media. This three dimensional approach will give a guideline to new micro-optical components in the future technology in the field of the optical memory and other micro-optical systems.
机译:为了满足未来光通信系统对超高数据传输速率的要求,已在这里使用VCSFL阵列和三维微光学器件(VCSFL阵列和Microlens阵列,它们的焦点自对准)开发了并行光学存储系统。纳米探针阵列的顶端)和自我调节功能。讨论了阵列头的概念,理论分析和制造过程,重点讨论了微光学问题,例如通过微透镜聚焦提高光学效率。使用金属孔径的Si或GaP半导体微探针成功制备了具有150 nm的小金属孔径和1.25%的光通量的平尖端微探针结构。从FDTD模拟中,可以使用具有不对称金属涂层结构的埋入式微探针来提高光通量,因为这是传播波与表面等离激元之间耦合效率更好的结构。由于聚焦光束有助于集成的VCSFL微探针阵列中更好的光通量,因此使用光致抗蚀剂的热回流和将图案转移到半导体衬底的过程,在微探针阵列的另一侧开发了微透镜阵列。光学组件之间的光轴对齐对于在此系统中获得所需的光学效率至关重要。因此,正在研究三维微光学调节以将很小的点聚焦在记录介质上。这种三维方法将为光学存储器和其他微光学系统领域中的未来技术中的新微光学组件提供指导。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号