首页> 外文期刊>Biophysical Journal >Traction stresses and translational distortion of the nucleus during fibroblast migration on a physiologically relevant ECM mimic.
【24h】

Traction stresses and translational distortion of the nucleus during fibroblast migration on a physiologically relevant ECM mimic.

机译:在生理相关的ECM模拟物上,成纤维细胞迁移过程中细胞核的牵引应力和翻译畸变。

获取原文
获取原文并翻译 | 示例
           

摘要

Cellular traction forces, resulting in cell-substrate physical interactions, are generated by actin-myosin complexes and transmitted to the extracellular matrix through focal adhesions. These processes are highly dynamic under physiological conditions and modulate cell migration. To better understand the precise dynamics of cell migration, we measured the spatiotemporal redistribution of cellular traction stresses (force per area) during fibroblast migration at a submicron level and correlated it with nuclear translocation, an indicator of cell migration, on a physiologically relevant extracellular matrix mimic. We found that nuclear translocation occurred in pulses whose magnitude was larger on the low ligand density surfaces than on the high ligand density surfaces. Large nuclear translocations only occurred on low ligand density surfaces when the rear traction stresses completely relocated to a posterior nuclear location, whereas such relocation took much longer time on high ligand density surfaces, probably due to the greater magnitude of traction stresses. Nuclear distortion was also observed as the traction stresses redistributed. Our results suggest that the reinforcement of the traction stresses around the nucleus as well as the relaxation of nuclear deformation are critical steps during fibroblast migration, serving as a speed regulator, which must be considered in any dynamic molecular reconstruction model of tissue cell migration. A traction gradient foreshortening model was proposed to explain how the relocation of rear traction stresses leads to pulsed fibroblast migration.
机译:肌动蛋白-肌球蛋白复合物产生细胞牵引力,导致细胞-底物的物理相互作用,并通过粘着力传递到细胞外基质。这些过程在生理条件下是高度动态的,并调节细胞迁移。为了更好地了解细胞迁移的精确动态,我们在亚微米水平上测量了成纤维细胞迁移过程中细胞牵引应力(单位面积力)的时空重分布,并将其与生理上相关的细胞外基质上的核易位相关联,后者是细胞迁移的指标模仿。我们发现核易位发生在脉冲中,其脉冲在低配体密度表面上比在高配体密度表面上大。大的核移位仅在后牵引应力完全重定位到后核位置时才发生在低配体密度的表面上,而这种移位在高配体密度的表面上花费了更长的时间,这可能是由于牵引应力的大小更大。随着牵引应力的重新分布,也观察到了核变形。我们的研究结果表明,增强成核细胞周围牵引力以及放松核变形是成纤维细胞迁移过程中的关键步骤,它是一种速度调节剂,在任何组织细胞迁移的动态分子重建模型中都必须考虑这一点。提出了一种牵引梯度缩短模型来解释后牵引应力的重新定位如何导致脉冲成纤维细胞迁移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号