...
首页> 外文期刊>Journal of Organometallic Chemistry >Diverse catalytic activity of the cationic actinide complex [(Et2N)(3)U][BPh4] in the dimerization and hydrosilylation of terminal alkynes. Characterization of the first f-element alkyne pi-complex [(Et2N)(2)U(C (CBu)-Bu-t)(eta(2)-HC (CBu)-Bu-t)][BPh
【24h】

Diverse catalytic activity of the cationic actinide complex [(Et2N)(3)U][BPh4] in the dimerization and hydrosilylation of terminal alkynes. Characterization of the first f-element alkyne pi-complex [(Et2N)(2)U(C (CBu)-Bu-t)(eta(2)-HC (CBu)-Bu-t)][BPh

机译:阳离子act系元素络合物[(Et2N)(3)U] [BPh4]在末端炔烃的二聚和氢化硅烷化中具有多种催化活性。第一个f元素炔烃pi复合物的表征[(Et2N)(2)U(C(CBu)-Bu-t)(eta(2)-HC(CBu)-Bu-t)] [BPh

获取原文
获取原文并翻译 | 示例

摘要

The cationic actinide complex [(Et2N)(3)U][BPh4] is an active catalytic precursor for the selective dimerization of terminal alkynes. The regioselectivity is mainly towards the geminal dimer but for bulky alkyne substituents, the unexpected cis-dimer is also obtained. Mechanistic studies show that the first step in the catalytic cycle is the formation of the acetylide complex [(Et2N)(2)UC=CR][BPh4] with the concomitant reversible elimination of Et2NH, followed by the formation of the alkyne pi-complex [(Et2N)(2)UC=CR(RC=CH)][BPh4]. This latter complex (R = 'Bu) has been characterized spectroscopically. The kinetic rate law is first order in organoactinide and exhibits a two domain behavior as a function of alkyne concentration. At low alkyne concentrations, the reaction follows an inverse order whereas at high alkyne concentrations, a zero order is observed. The turnover-limiting step is the C=C bond insertion of the terminal alkyne into the actinide-acetylide bond to give the corresponding alkenyl complex with Delta H double dagger = 15.6(3) kcal mol(-1) and Delta S double dagger = - 11.4(6) eu. The following step, protonolysis of the uranium-carbon bond of the alkenyl intermediate by the terminal alkyne, is much faster but can be retarded by using CH3C=CD, allowing the formation of trimers. The unexpected cis-isomer is presumably obtained by the isomerization of the trans-alkenyl intermediate via an envelope mechanism, A plausible mechanistic scenario is proposed for the oligomerization of terminal alkynes. The cationic complex [(Et2N)(3)U][BPh4] has been found to be also an efficient catalyst for the hydrosilylation of terminal alkynes. The chemoselectivity and regiospecificity of the reaction depend strongly on the nature of the alkyne, the solvent and the reaction temperature. The hydrosilylation reaction of the terminal alkynes with PhSiH3 at room temperature produced a myriad of products among which the cis- and trims-vinylsilanes, the alkene and the silylalkyne are the major components. At higher temperatures, besides the products obtained at room temperature, the double hydrosilylated alkene, in which the two silicon moieties are connected at the same carbon atom, is obtained. The catalytic hydrosilylation of (TMS)C=CH and PhSiH3 with [(Et2N)(3)U][BPh4] was found to proceed only at higher temperatures. Mechanistically, the key intermediate seems to be the uranium-hydride complex [(Et2N)(2)U-H][BPh4], as evidenced by the lack of the dehydrogenative coupling of silanes. A plausible mechanistic scenario is proposed for the hydrosilylation of terminal alkynes taking into account the formation of all products. (C) 2000 Elsevier Science S.A. All rights reserved. [References: 131]
机译:阳离子act系元素络合物[(Et2N)(3)U] [BPh4]是用于末端炔烃选择性二聚的活性催化前体。区域选择性主要针对双链二聚体,但是对于大的炔烃取代基,也获得了出乎意料的顺式二聚体。机理研究表明,催化循环的第一步是乙炔配合物[(Et2N)(2)UC = CR] [BPh4]的形成,同时可逆地消除Et2NH,随后形成炔pi配合物[(Et2N)(2)UC = CR(RC = CH)] [BPh4]。后一种配合物(R ='Bu)已通过光谱表征。动力学速率定律在有机act系中是一阶的,并且表现出作为炔烃浓度的函数的两个域行为。在低炔烃浓度下,反应遵循反序,而在高炔烃浓度下,观察到零序。营业额限制步骤是将末端炔烃的C = C键插入the系元素-乙炔键中,得到相应的烯基配合物,其ΔH双匕首= 15.6(3)kcal mol(-1)和Delta S双匕首= -欧盟11.4(6)。接下来的步骤,即末端炔烃对烯基中间体的铀-碳键进行质子分解要快得多,但可以通过使用CH3C = CD进行阻滞,从而形成三聚体。意外的顺式异构体大概是通过反式烯基中间体的包封机理进行异构化而获得的。提出了一种可行的机制,用于末端炔烃的低聚。已发现阳离子络合物[((Et2N)(3)U] [BPh4]也是末端炔烃氢化硅烷化的有效催化剂。反应的化学选择性和区域特异性在很大程度上取决于炔烃的性质,溶剂和反应温度。在室温下,末端炔烃与PhSiH3的氢化硅烷化反应产生了无数的产物,其中顺式和三向乙烯基硅烷,烯烃和甲硅烷基炔是主要成分。在较高的温度下,除了在室温下获得的产物之外,还获得了两个硅部分在相同的碳原子上连接的双氢化硅烷化的烯烃。发现[TMS] C = CH和PhSiH3与[(Et2N)(3)U] [BPh4]的催化氢化硅烷化仅在较高温度下进行。从机理上讲,关键中间体似乎是氢化铀络合物[(Et2N)(2)U-H] [BPh4],这是由于缺乏硅烷的脱氢偶联作用所证明的。考虑到所有产物的形成,提出了一种可行的机理方案,用于末端炔烃的氢化硅烷化。 (C)2000 Elsevier Science S.A.保留所有权利。 [参考:131]

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号