首页> 外文期刊>Journal of the Taiwan Institute of Chemical Engineers >Computational modeling of heat transfer in an annular porous medium solar energy absorber with the P1-radiative differential approximation
【24h】

Computational modeling of heat transfer in an annular porous medium solar energy absorber with the P1-radiative differential approximation

机译:P1辐射微分逼近的环形多孔介质太阳能吸收器传热计算模型

获取原文
获取原文并翻译 | 示例
           

摘要

We study the steady, laminar thermal convection flow in a participating, absorbing-emitting fluid saturated porous medium occupying a cylindrical annulus with significant thermal radiation effects as a simulation of a solar energy absorber system. The dimensionless incompressible, viscous conservation equations for mass, axial momentum, radial momentum, heat conservation and radiative transfer equation are presented with appropriate boundary conditions in an axisymmetric (X, R) coordinate system. The Traugott P1-Differential radiative transfer model is used which reduces the general integro-differential equation for radiation heat transfer to a partial differential equation. The Darcy-Forcheimmer isotropic porous medium drag force model is employed to simulate resistance effects of the solar porous medium with constant permeability in both the radial (R) and axial (X) direction. A numerical finite difference (FTCS) scheme is used to compute the velocity (U,V), temperature (0) and dimensionless zero moment of intensity (I-0) distributions for the effects of conduction-radiation parameter (N), Darcy parameter (Da), Forchheimer parameter (Fs), Rayleigh buoyancy number (Ra), aspect ratio (A) and Prandtl number (Pr). The computations have shown that increasing aspect ratio increases both axial and radial velocities and elevates the radiative moment of intensity. Increasing Darcy number accelerates both axial and radial flow whereas increasing Forchheimer number decelerates the axial and radial flow. Higher values of optical thickness induce a weak deceleration in the radial flow whereas they increase both axial flow velocity and temperature. Increasing optical thickness also reduces radial radiative moment of intensity at intermediate axial coordinate values but enhances them at low and high axial coordinate values. Extensive validation is conducted with the network thermo-electric simulation program RAD-SPICE. The model finds important applications in solar energy porous wafer absorber systems, crystal growth technologies and also chemical engineering thermal technologies. (C) 2016 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
机译:我们研究了一个参与吸收吸收-发射流体的饱和多孔介质中的稳定层流对流,该多孔介质占据了具有显着热辐射效应的圆柱形环面,作为太阳能吸收器系统的模拟。在轴对称(X,R)坐标系中,以适当的边界条件给出了质量,轴向动量,径向动量,热守恒和辐射传递方程的无量纲不可压缩粘性守恒方程。使用了Traugott P1-微分辐射传递模型,该模型将用于辐射热传递的一般积分微分方程简化为偏微分方程。采用Darcy-Forcheimmer各向同性多孔介质阻力模型来模拟具有恒定渗透率的太阳能多孔介质在径向(R)和轴向(X)方向上的阻力效应。数值有限差分(FTCS)方案用于计算速度(U,V),温度(0)和无量纲零强度矩(I-0)分布,以计算传导辐射参数(N),达西参数的影响(Da),Forchheimer参数(Fs),瑞利浮力数(Ra),纵横比(A)和普朗特数(Pr)。计算表明,增加纵横比会同时增加轴向和径向速度,并增加强度的辐射矩。 Darcy数增加会同时加速轴向和径向流动,而Forchheimer数增加会降低轴向和径向流动。较高的光学厚度值会引起径向流的减速,而它们会同时增加轴向流速和温度。增加光学厚度还会在中间轴向坐标值处降低径向辐射矩强度,但在低轴向坐标值和高轴向坐标值处会增强径向辐射矩。使用网络热电模拟程序RAD-SPICE进行了广泛的验证。该模型在太阳能多孔晶片吸收器系统,晶体生长技术以及化学工程热技术中具有重要的应用。 (C)2016台湾化学工程师学会。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号