首页> 外文期刊>Journal of the Taiwan Institute of Chemical Engineers >Nanoparticles migration effects on magnetohydrodynamic (MHD) laminar mixed convection of alumina/water nanofluid inside microchannels
【24h】

Nanoparticles migration effects on magnetohydrodynamic (MHD) laminar mixed convection of alumina/water nanofluid inside microchannels

机译:纳米颗粒迁移对微通道内氧化铝/水纳米流体的磁流体动力学(MHD)层流混合对流的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This is a theoretical study on effects of nanoparticles migration on magnetohydrodynamic mixed convective heat transfer of alumina/water nanofluid inside a vertical microchannel. Walls are subjected to different heat fluxes; q(lw)" for the left wall and q(rw)" for the right wall, and nanoparticles are assumed to have a slip velocity relative to the base fluid, induced by Brownian diffusion and thermophoresis. Scale analysis of the governing equations indicates that buoyancy effects due to the temperature distribution is insignificant, however, the buoyancy effects due to concentration distribution of nanoparticles have vast effects on flow and heat transfer characteristics. Further, it is shown that nanoparticles eject themselves from the heated walls and accumulate in the core region, but they are more likely to accumulate near the wall with lower heat flux. Also, the non-uniform nanoparticle distribution causes velocities to move toward the wall with higher heat flux and enhances heat transfer rate there. Moreover, while the nanoparticle volume fraction is smaller than 0.1, the maximum increase in the values of heat transfer rate is 37% for small nanoparticles which drops to 14% for larger nanoparticles. Applying a magnetic field leads to 42% and 30% increase in the values of heat transfer rate for small and large nanoparticles respectively. Additionally, one-sided heating serves as another causing factor for increasing the heat transfer rate which boosts it up to 80% for large nanoparticles. (C) 2015 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
机译:这是关于纳米颗粒迁移对垂直微通道内氧化铝/水纳米流体的磁流体动力学混合对流传热影响的理论研究。墙壁受到不同的热通量;左侧壁为q(lw)”,右侧壁为q(rw)”,并且假定纳米粒子相对于基础流体具有由布朗扩散和热泳引起的滑移速度。控制方程的规模分析表明,温度分布引起的浮力影响不明显,但是,纳米颗粒浓度分布引起的浮力影响流量和传热特性。此外,显示出纳米粒子从加热的壁喷射出自身并聚集在核心区域中,但是它们更可能以较低的热通量聚集在壁附近。而且,纳米颗粒的不均匀分布导致速度以更高的热通量向壁移动,并提高了那里的传热速率。而且,尽管纳米颗粒的体积分数小于0.1,但是对于小的纳米颗粒,传热速率值的最大增加为37%,对于较大的纳米颗粒下降为14%。施加磁场分别导致小型和大型纳米粒子的热传递率值分别增加42%和30%。另外,单侧加热是增加传热速率的另一个原因,对于大的纳米粒子,单侧加热将其提高到80%。 (C)2015台湾化学工程师学会。由Elsevier B.V.发布。保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号