...
首页> 外文期刊>Biophysical Journal >Illuminating Myocyte-Fibroblast Homotypic and Heterotypic Gap Junction Dynamics Using Dynamic Clamp
【24h】

Illuminating Myocyte-Fibroblast Homotypic and Heterotypic Gap Junction Dynamics Using Dynamic Clamp

机译:使用动态夹具照亮心肌细胞-成纤维细胞同型和异型间隙连接动力学

获取原文
获取原文并翻译 | 示例

摘要

Fibroblasts play a significant role in the development of electrical and mechanical dysfunction of the heart; however, the underlying mechanisms are only partially understood. One widely studied mechanism suggests that fibroblasts produce excess extracellular matrix, resulting in collagenous septa that slow propagation, cause zig-zag conduction paths, and decouple cardiomyocytes, resulting in a substrate for cardiac arrhythmia. An emerging mechanism suggests that fibroblasts promote arrhythmogenesis through direct electrical interactions with cardiomyocytes via gap junction (GJ) channels. In the heart, three major connexin (Cx) isoforms, Cx40, Cx43, and Cx45, form GJ channels in cell-type-specific combinations. Because each Cx is characterized by a unique time- and transjunctional voltage-dependent profile, we investigated whether the electrophysiological contributions of fibroblasts would vary with the specific composition of the myocyte-fibroblast (M-F) GJ channel. Due to the challenges of systematically modifying Cxs in vitro, we coupled native cardiomyocytes with in silico fibroblast and GJ channel electrophysiology models using the dynamic-clamp technique. We found that there is a reduction in the early peak of the junctional current during the upstroke of the action potential (AP) due to GJ channel gating. However, effects on the cardiomyocyte AP morphology were similar regardless of the specific type of GJ channel (homotypic Cx43 and Cx45, and heterotypic Cx43/Cx45 and Cx45/Cx43). To illuminate effects at the tissue level, we performed multiscale simulations of M-F coupling. First, we developed a cell-specific model of our dynamic-clamp experiments and investigated changes in the underlying membrane currents during M-F coupling. Second, we performed two-dimensional tissue sheet simulations of cardiac fibrosis and incorporated GJ channels in a cell type-specific manner. We determined that although GJ channel gating reduces junctional current, it does not significantly alter conduction velocity during cardiac fibrosis relative to static GJ coupling. These findings shed more light on the complex electrophysiological interplay between cardiac fibroblasts and myocytes.
机译:成纤维细胞在心脏的电气和机械功能障碍的发展中起着重要作用。但是,底层机制仅得到部分理解。一种被广泛研究的机制表明,成纤维细胞会产生过量的细胞外基质,从而导致胶原隔膜的繁殖变慢,引起之字形传导路径并使心肌细胞解偶联,从而导致心律失常。一种新兴的机制表明,成纤维细胞通过间隙连接(GJ)通道与心肌细胞直接电相互作用,从而促进心律失常的发生。在心脏中,三种主要的连接蛋白(Cx)亚型Cx40,Cx43和Cx45在细胞类型特异性组合中形成GJ通道。因为每个Cx都具有独特的时间和跨接点电压依赖性特征,所以我们研究了成纤维细胞的电生理作用是否会随肌成纤维细胞(M-F)GJ通道的特定组成而变化。由于在体外系统修饰Cxs的挑战,我们使用动态钳技术将天然心肌细胞与计算机成纤维细胞和GJ通道电生理模型耦合。我们发现,由于GJ通道门控,在动作电位(AP)上升期间,结电流的早期峰值减小。但是,无论GJ通道的具体类型如何(同型Cx43和Cx45以及异型Cx43 / Cx45和Cx45 / Cx43),对心肌AP形态的影响都相似。为了阐明组织水平的效果,我们进行了M-F耦合的多尺度模拟。首先,我们开发了动态钳实验的特定细胞模型,并研究了M-F耦合过程中潜在膜电流的变化。其次,我们进行了心脏纤维化的二维组织薄片模拟,并以细胞类型特异性方式整合了GJ通道。我们确定,尽管GJ通道门控降低了结电流,但相对于静态GJ耦合,它不会显着改变心脏纤维化期间的传导速度。这些发现进一步揭示了心脏成纤维细胞和心肌细胞之间复杂的电生理相互作用。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号