首页> 外文期刊>Biophysical Journal >Large-Scale Conformational Transitions in Supercoiled DNA Revealed by Coarse-Grained Simulation
【24h】

Large-Scale Conformational Transitions in Supercoiled DNA Revealed by Coarse-Grained Simulation

机译:粗粒模拟显示超螺旋DNA的大规模构象转变

获取原文
获取原文并翻译 | 示例
           

摘要

Topological constraints, such as those associated with DNA supercoiling, play an integral role in genomic regulation and organization in living systems. However, physical understanding of the principles that underlie DNA organization at biologically relevant length scales remains a formidable challenge. We develop a coarse-grained simulation approach for predicting equilibrium conformations of supercoiled DNA. Our methodology enables the study of supercoiled DNA molecules at greater length scales and supercoiling densities than previously explored by simulation. With this approach, we study the conformational transitions that arise due to supercoiling across the full range of supercoiling densities that are commonly explored by living systems. Simulations of ring DNA molecules with lengths at the scale of topological domains in the Escherichia coil chromosome (similar to 10 kilobases) reveal large-scale conformational transitions elicited by supercoiling. The conformational transitions result in three supercoiling conformational regimes that are governed by a competition among chiral coils, extended plectonemes, and branched hyper-supercoils. These results capture the nonmonotonic relationship of size versus degree of supercoiling observed in experimental sedimentation studies of supercoiled DNA, and our results provide a physical explanation of the conformational transitions underlying this behavior. The length scales and supercoiling regimes investigated here coincide with those relevant to transcription-coupled remodeling of supercoiled topological domains, and we discuss possible implications of these findings in terms of the interplay between transcription and topology in bacterial chromosome organization.
机译:拓扑约束(例如与DNA超螺旋相关的约束)在生物系统的基因组调控和组织中起着不可或缺的作用。但是,对生物学相关长度尺度上的DNA组织基础原理的物理理解仍然是一个巨大的挑战。我们开发了一种粗粒度的模拟方法来预测超螺旋DNA的平衡构象。我们的方法使得能够以比以前通过仿真探索的更大的长度尺度和超螺旋密度研究超螺旋DNA分子。通过这种方法,我们研究了在生命系统通常探索的整个超螺旋密度范围内,由于超螺旋引起的构象转变。环状DNA分子的长度在大肠埃希氏菌(Escherichia coil)染色体上的拓扑结构域范围内(类似于10kb),其模拟揭示了超螺旋引发的大规模构象转变。构象转变导致三种超螺旋构象状态,它们由手性线圈,延伸的双链构架和支化的超超螺旋之间的竞争所支配。这些结果捕获了在超螺旋DNA的实验沉积研究中观察到的大小与超螺旋度之间的非单调关系,我们的结果提供了对该行为基础的构象转变的物理解释。在这里研究的长度尺度和超螺旋机制与超螺旋拓扑结构域的转录耦合重塑相关,并且我们就细菌染色体组织中转录和拓扑之间的相互作用讨论了这些发现的可能含义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号