首页> 外文期刊>Journal of tissue engineering and regenerative medicine >Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair
【24h】

Optimizing a multifunctional microsphere scaffold to improve neural precursor cell transplantation for traumatic brain injury repair

机译:优化多功能微球支架以改善神经前体细胞移植以修复脑外伤

获取原文
获取原文并翻译 | 示例
           

摘要

Tissue engineering using stem cells is widely used to repair damaged tissues in diverse biological systems; however, this approach has met with less success in regenerating the central nervous system (CNS). In this study we optimized and characterized the surface chemistry of chitosan-based scaffolds for CNS repair. To maintain radial glial cell (RGC) character of primitive neural precursors, fibronectin was adsorbed to chitosan. The chitosan was further modified by covalently linking heparin using genipin, which then served as a linker to immobilize fibroblast growth factor-2 (FGF-2), creating a multifunctional film. Fetal rat neural precursors plated onto this multifunctional film proliferated and remained multipotent for at least 3 days without providing soluble FGF-2. Moreover, they remained less mature and more highly proliferative than cells maintained on fibronectin-coated substrates in culture medium supplemented with soluble FGF-2. To create a vehicle for cell transplantation, a 3% chitosan solution was electrosprayed into a coagulation bath to generate microspheres (range 30-100 mu m, mean 64 mu m) that were subsequently modified. Radial glial cells seeded onto these multifunctional microspheres proliferated for at least 7 days in culture and the microspheres containing cells were small enough to be injected, using 23 Gauge Hamilton syringes, into the brains of adult rats that had previously sustained cortical contusion injuries. When analysed 3 days later, the transplanted RGCs were positive for the stem cell/progenitor marker Nestin. These results demonstrate that this multifunctional scaffold can be used as a cellular and growth factor delivery vehicle for the use in developing cell transplantation therapies for traumatic brain injuries. Copyright (C) 2013 John Wiley & Sons, Ltd.
机译:使用干细胞的组织工程被广泛用于修复各种生物系统中受损的组织。但是,这种方法在再生中枢神经系统(CNS)方面取得的成功较少。在这项研究中,我们优化和表征了用于中枢神经系统修复的壳聚糖基支架的表面化学。为了维持原始神经前体的放射状胶质细胞(RGC)特性,将纤连蛋白吸附到壳聚糖上。壳聚糖通过使用genipin共价连接肝素而得到进一步修饰,然后将其用作固定成纤维细胞生长因子2(FGF-2)的连接子,从而形成多功能膜。镀在该多功能膜上的胎儿大鼠神经前体增殖并保持多能性至少3天,而没有提供可溶性FGF-2。而且,与在补充有可溶性FGF-2的培养基中保持在纤连蛋白包被的底物上的细胞相比,它们保持的成熟度更低,增殖性更高。为了制造用于细胞移植的载体,将3%的壳聚糖溶液电喷雾到混凝浴中以产生微球(范围为30-100微米,平均64微米),随后对其进行修饰。接种到这些多功能微球上的gl神经胶质细胞在培养中至少增殖了7天,并且包含细胞的微球足够小,可以使用23号Gauge Hamilton注射器注射到先前遭受了皮质挫伤的成年大鼠的大脑中。 3天后分析,移植的RGC对干细胞/祖细胞标记物Nestin呈阳性。这些结果表明,该多功能支架可用作细胞和生长因子递送载体,用于开发用于颅脑损伤的细胞移植疗法。版权所有(C)2013 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号