首页> 外文期刊>Journal of Theoretical Biology >Predator bioenergetics and the prey size spectrum: Do foraging costs determine fish production?
【24h】

Predator bioenergetics and the prey size spectrum: Do foraging costs determine fish production?

机译:捕食者的生物能学和猎物的大小范围:觅食成本决定鱼的产量吗?

获取原文
获取原文并翻译 | 示例
           

摘要

Most models of fish growth and predation dynamics assume that food ingestion rate is the major component of the energy budget affected by prey availability, while active metabolism is invariant (here called constant activity hypothesis). However, increasing empirical evidence supports an opposing view: fish tend to adjust their foraging activity to maintain reasonably constant ingestion levels in the face of varying prey density and/or quality (the constant satiation hypothesis). In this paper, we use a simple but flexible model of fish bioenergetics to show that constant satiation is likely to occur in fish that optimize both net production rate and life history. The model includes swimming speed as an explicit measure of foraging activity leading to both energy gains (through prey ingestion) and losses (through active metabolism). The fish is assumed to be a particulate feeder that has to swim between consecutive individual prey captures, and that shifts its diet ontogenetically from smaller to larger prey. The prey community is represented by a negative power-law size spectrum. From these rules, we derive the net production of fish as a function of the size spectrum, and this in turn establishes a formal link between the optimal life history (i.e. maximum body size) and prey community structure. In most cases with realistic parameter values, optimization of life history ensures that: (i) a constantly satiated fish preying on a steep size spectrum will stop growing and invest all its surplus energy in reproduction before satiation becomes too costly; (ii) conversely, a fish preying on a shallow size spectrum will grow large enough for satiation to be present throughout most of its ontogeny. These results provide a mechanistic basis for previous empirical findings, and call for the inclusion of active metabolism as a major factor limiting growth potential and the numerical response of predators in theoretical studies of food webs.
机译:大多数鱼类生长和捕食动力学模型都假设食物摄入率是受猎物可利用性影响的能量预算的主要组成部分,而活跃的新陈代谢是不变的(此处称为恒定活动假说)。然而,越来越多的经验证据支持相反的观点:面对变化的猎物密度和/或质量,鱼类倾向于调整其觅食活动以保持合理的摄食水平(持续的饱足假设)。在本文中,我们使用一种简单而灵活的鱼类生物能学模型来表明,鱼类的恒定饱食可能会发生,从而优化净生产率和生活史。该模型将游泳速度作为觅食活动的显式量度,从而导致能量获取(通过猎物的摄入)和能量消耗(通过活动的新陈代谢)两者。假定这条鱼是一种颗粒状喂食器,必须在连续的单个猎物捕获之间游动,并且将其饮食在个体发育上从较小的猎物转变为较大的猎物。捕食者群体由负的幂律大小谱表示。从这些规则中,我们得出鱼的净产量是大小谱的函数,这反过来在最佳生活史(即最大体型)和猎物群落结构之间建立了正式的联系。在大多数情况下,通过合理的参数值,可以优化生活历程,以确保:(i)在饱足的鱼群上付出沉重代价之前,不断吃饱的鱼会停止生长,并将其所有剩余能量用于繁殖; (ii)相反,捕食浅表鱼的鱼会长得足够大,足以在其大部分个体发育中饱食。这些结果为以前的经验发现提供了机械基础,并呼吁在食物网的理论研究中将活性代谢作为限制生长潜力和掠食者数值响应的主要因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号