...
首页> 外文期刊>Journal of the Royal Society Interface >Finite element modelling versus classic beam theory: comparing methods for stress estimation in a morphologically diverse sample of vertebrate long bones
【24h】

Finite element modelling versus classic beam theory: comparing methods for stress estimation in a morphologically diverse sample of vertebrate long bones

机译:有限元建模与经典梁理论:比较脊椎动物长骨形态多样的样本中应力估算的方法

获取原文
获取原文并翻译 | 示例
           

摘要

Classic beam theory is frequently used in biomechanics to model the stress behaviour of vertebrate long bones, particularly when creating intraspecific scaling models. Although methodologically straightforward, classic beam theory requires complex irregular bones to be approximated as slender beams, and the errors associated with simplifying complex organic structures to such an extent are unknown. Alternative approaches, such as finite element analysis (FEA), while much more tirne-consurning to perform, require no such assumptions. This study compares the results obtained using classic beam theory with those from FEA to quantify the beam theory errors and to provide recommendations about when a full FEA is essential for reasonable biomechanical predictions. High-resolution computed tomographic scans of eight vertebrate long bones were used to calculate diaphyseal stress owing to various loading regimes. Under compression, FEA values of minimum principal stress (σ_(min)) were on average 142 per cent (±28% s.e.) larger than those predicted by beam theory, with deviation between the two models correlated to shaft curvature (two-tailed p = 0.03, r~2 = 0.56). Under bending, FEA values of maximum principal stress (σ_(max)) and beam theory values differed on average by 12 per cent (±4% s.e.), with deviation between the models significantly correlated to cross-sectional asymmetry at midshaft (two-tailed p = 0.02, r~2 = 0.62). In torsion, assuming maximum stress values occurred at the location of minimum cortical thickness brought beam theory and FEA values closest in line, and in this case FEA values of T_(torsion) were on average 14 per cent (+ 5% s.e.) higher than beam theory. Therefore, FEA is the preferred modelling solution when estimates of absolute diaphyseal stress are required, although values calculated by beam theory for bending may be acceptable in some situations.
机译:经典射束理论经常用于生物力学中,以模拟脊椎动物长骨的应力行为,尤其是在创建种内缩放模型时。尽管方法学上简单明了,但是经典的射束理论要求将复杂的不规则骨骼近似为细长的射束,而将复杂的有机结构简化到这样的程度所引起的错误是未知的。诸如有限元分析(FEA)之类的替代方法虽然要花很多时间才能做到,但是却不需要这种假设。这项研究将使用经典射束理论获得的结果与有限元分析的结果进行了比较,以量化射束理论的误差,并就何时进行完整的有限元分析对于合理的生物力学预测至关重要提供了建议。由于使用了不同的加载方式,因此使用了八个脊椎动物长骨的高分辨率计算机断层扫描来计算骨干应力。在压缩状态下,最小主应力(σ_(min))的FEA值平均比梁理论预测的值大142%(±28%se),而两个模型之间的偏差与轴曲率有关(两尾p = 0.03,r〜2 = 0.56)。在弯曲情况下,最大主应力(σ_(max))和梁理论值的FEA值平均相差12%(±4%se),其中模型之间的偏差与中轴的横截面不对称性显着相关(两个尾p = 0.02,r〜2 = 0.62)。在扭转中,假设最大应力值发生在最小皮质厚度的位置,则使梁理论和FEA值最接近一致,在这种情况下,T_(扭转)的FEA值平均比弯曲强度高14%(+ 5%se)。梁理论。因此,当需要估计绝对骨干应力时,FEA是首选的建模解决方案,尽管在某些情况下可以通过梁理论计算出的弯曲值也可以接受。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号