...
首页> 外文期刊>Journal of the Royal Society Interface >A hybrid algorithm for coupling partial differential equation and compartment-based dynamics
【24h】

A hybrid algorithm for coupling partial differential equation and compartment-based dynamics

机译:耦合偏微分方程和基于隔室动力学的混合算法

获取原文
获取原文并翻译 | 示例
           

摘要

Stochastic simulation methods can be applied successfully to model exact spatio-temporally resolved reaction-diffusion systems. However, in many cases, these methods can quickly become extremely computationally intensive with increasing particle numbers. An alternative description of many of these systems can be derived in the diffusive limit as a deterministic, continuum system of partial differential equations (PDEs). Although the numerical solution of such PDEs is, in general, much more efficient than the full stochastic simulation, the deterministic continuum description is generally not valid when copy numbers are low and stochastic effects dominate. Therefore, to take advantage of the benefits of both of these types of models, each of which may be appropriate in different parts of a spatial domain, we have developed an algorithm that can be used to couple these two types of model together. This hybrid coupling algorithm uses an overlap region between the two modelling regimes. By coupling fluxes at one end of the interface and using a concentration-matching condition at the other end, we ensure that mass is appropriately transferred between PDE-and compartment-based regimes. Our methodology gives notable reductions in simulation time in comparison with using a fully stochastic model, while maintaining the important stochastic features of the system and providing detail in appropriate areas of the domain. We test our hybrid methodology robustly by applying it to several biologically motivated problems including diffusion and morphogen gradient formation. Our analysis shows that the resulting error is small, unbiased and does not grow over time.
机译:随机模拟方法可以成功地应用于精确的时空分辨的反应扩散系统的建模。但是,在许多情况下,随着粒子数量的增加,这些方法很快会变得计算量很大。这些系统中许多系统的替代描述可以在扩散极限中导出,作为偏微分方程(PDE)的确定性连续系统。尽管一般而言,此类PDE的数值解决方案比完全随机模拟要有效得多,但是当拷贝数较低且随机效应占主导地位时,确定性连续描述通常无效。因此,为了利用这两种类型的模型的优势,每种模型都适用于空间域的不同部分,我们开发了一种算法,可用于将这两种类型的模型耦合在一起。该混合耦合算法使用两个建模方案之间的重叠区域。通过在界面的一端耦合通量并在另一端使用浓度匹配条件,我们确保质量在基于PDE和基于隔室的体系之间适当转移。与使用完全随机模型相比,我们的方法显着减少了仿真时间,同时保持了系统的重要随机特征并在相应领域提供了详细信息。通过将其应用于包括扩散和形态发生素梯度形成在内的几个生物学动机问题,我们对混合方法进行了稳健的测试。我们的分析表明,由此产生的误差很小,没有偏见并且不会随时间增长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号